PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal parameters for the efficient microwave ablation of liver tumor from the 3D-IRCADb-01 database

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microwave ablation is a minimally invasive thermal modality for cancer treatment with high survival and low recurrence rates. Despite the unquestionable benefits of microwave ablation, the interaction between the medical instruments and the tissue may cause damage to the healthy tissue around the tumor. Such damages can be removed by clarifying the conditions for their development. In addition to clinical methods, computer simulations have become very effective tools for optimizing microwave ablation performance. Methods: The study was focused on the determination of the optimal input power for complete microwave tumor ablation with an adequate safety margin avoiding injury to the surrounding healthy tissue. In three-dimensional simulations, the liver tumor model was based on a real tumor (1.74 cm × 2.40 cm × 1.43 cm) from the 3D-IRCADb-01 database. Calculations were performed for a 10-slot antenna proven to achieve a higher degree of ablation zone localization than a standard single-slot antenna. The temperature-dependent dielectric and thermal properties of healthy and tumoral liver tissue, blood perfusion, and water content were included in the model. Results: The obtained simulation results revealed that the proper choice of input power ensures that necrotic tissue is mainly located in the tumor with minimal damage to the surrounding healthy tissue. Conclusions: This study may represent a step forward in the planning of individual microwave ablation treatment for each patient.
Rocznik
Strony
47--54
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Institute of Physics, University of Belgrade, Serbia.
  • Institute of Physics, University of Belgrade, Serbia.
  • Institute of Physics, University of Belgrade, Serbia.
Bibliografia
  • [1] ANANTHAKRISHNAN A., GOGINENI V., SAEIAN K., Epidemiology of Primary and Secondary Liver Cancers, Semin. Intervent. Radiol., 2006, 23 (1), 47–63.
  • [2] BALOGH J., VICTOR D., ASHAM E.H., BURROUGHS S.G., BOKTOUR M., SAHARIA A., LI X., GHOBRIAL R.M., MONSOUR H.P. Jr., Hepatocellular carcinoma: A review, J. Hepatocell. Carcinoma, 2016, 3, 41–53.
  • [3] VILLANUEVA A., Hepatocellular Carcinoma, N. Engl. J. Med., 2019, 380, 1450–1462.
  • [4] LINN Y.L., CHEE M.Y., KOH Y.X., TEO J.Y., CHEOW P.C., CHOW P.K.H., CHAN C.Y., CHUNG A.Y.F., OOI L.L.P.J., GOH B.K.P., Actual 10-year survivors and 10-year recurrence free survivors after primary liver resection for hepatocellular carcinoma in the 21st century: a single institution contemporary experience, J. Surg. Oncol., 2021, 123 (1), 214–221.
  • [5] CHEN J.G., ZHU J., ZHANG Y.H., CHEN Y.S., DING L.L., CHEN H.Z., SHEN A.G., WANG G.R., Liver Cancer Survival: A Real World Observation of 45 Years with 32,556 Cases, Journal of Hepatocellular Carcinoma, 2021, 8, 1023–1034.
  • [6] LI Y., ZHANG R., XU Z., WANG Z., Advances in Nanoliposomes for the Diagnosis and Treatment of Liver Cancer, Int. J. Nanomedicine, 2022, 17, 909–925.
  • [7] KOULOURIS A., TSAGKARIS C., SPYROU V., PAPPA E., TROULLINOU A., NIKOLAOU M., Hepatocellular Carcinoma: An Overview of the Changing Landscape of Treatment Options, J. Hepatocell. Carcinom, 2021, 8, 387–401.
  • [8] XU X.L., LIU X.D., LIANG M., LUO B.M., Radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma: systematic review of randomized controlled trials with meta-analysis and trial sequential analysis, Radiology, 2018, 287 (2), 461–472.
  • [9] GLASSBERG M.B., GHOSH S., CLYMER J.W., WRIGHT G.W.J., FERKO N., AMARAL J.F., Microwave ablation compared with hepatic resection for the treatment of hepatocellular carcinoma and liver metastases: A systematic review and meta-analysis, World J. Surg. Oncol., 2019, 17 (1), 98.
  • [10] REIG M., FORNER A., RIMOLA J., FERRER-FÀBREGA J., BURREL M., GARCIA-CRIADO Á., KELLEY R.K., GALLE P.R., MAZZAFERRO V., SALEM R., SANGRO B., SINGAL A.G., VOGEL A., FUSTER J., AYUSO C., BRUIX J., BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update, J. Hepatol., 2022, 76 (3), 681–683.
  • [11] XU H., ZHANG Q., TAN Y.L., ZHANG Y., WEI J.Z., WANG L.L., XIE B., Efficacy of microwave ablation and entecavir as a combination treatment for primary liver cancer and their effects on hepatitis B virus and liver function, All Life, 2020, 13 (1), 524–531.
  • [12] HUMPHREY S., NEWCOMER J.B., RAISSI D., GABRIEL G., Percutaneous microwave ablation for early-stage intrahepatic cholangiocarcinoma: A single-institutional cohort, J. Clin. Imaging Sci., 2024, 13, 4.
  • [13] CURTO S., TAJ-ELDIN M., FAIRCHILD D., PRAKASH P., Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation, Med. Phys., 2015, 42 (11), 6152–6161.
  • [14] KARAMPATZAKIS A., KÜHN S., TSANIDIS G., NEUFELD E., SAMARAS T., KUSTER N., Antenna design and tissue parameters considerations for an improved modelling of microwave ablation in the liver, Phys. Med. Biol., 2013, 58 (10), 3191–3206.
  • [15] PRAKASH P., CONVERSE M.C., WEBSTER J.G., MAHVI D.M., An optimal sliding choke antenna for hepatic microwave ablation, IEEE Trans. Bio-Med. Eng., 2009, 56 (10), 2470–2476.
  • [16] YANG D., BERTRAM J.M., CONVERSE M.C., O’ROURKE A.P., WEBSTER J.G., HAGNESS S.C., WILL J.A., MAHVI D.M., A floating sleeve antenna yields localized hepatic microwave ablation, IEEE Trans. Bio-Med. Eng., 2006, 53 (5), 533–537.
  • [17] SUN Y.Y., CHENG Z.G., DONG L., ZHANG G.M., WANG Y., LIANG P., Comparison of temperature curve and ablation zone between 915-and 2450 MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers, Eur. J. Radiol., 2012, 81 (3), 553–557.
  • [18] GE M., JIANG H., HUANG X., ZHOU Y., ZHI D., ZHAO G., CHEN Y., WANG L., QIU B., A multi-slot coaxial microwave antenna for liver tumor ablation, Phys. Med. Biol., 2018, 63 (17), 175011.
  • [19] WANG Q., YAN H., GUO M., MENG L., LONG Z., LONG Y., YANG H., Three-dimensional finite element analysis of a novel interzygapophyseal fusion device for lower cervical spine, Acta Bioeng. Biomech., 2022, 24 (2), 187–193.
  • [20] LIU P., WAN J., LIU W., ZHAO Y., YAN S., JIANG W., LIU H., Numerical analysis of the effects of canal wall-up and canal wall-down mastoidectomy on the sound transmission characteristics of human ears, Acta of Bioengineering and Biomechanics, 2023, 25 (2), 132–145.
  • [21] SU P., YANG Y., ZHANG L., HUANG L., Biomechanical simulation of needle insertion into cornea based on distortion Energy failure criterion, Acta Bioeng. Biomech., 2016, 18 (1), 65–75.
  • [22] SERVIN F., COLLINS J.A., HEISELMAN J.S., FREDERICK-DYER K.C., PLANZ V.B., GEEVARGHESE S.K., BROWN D.B., JARNAGIN W.R., MIGA M.I., Simulation of Image-Guided Microwave Ablation Therapy Using a Digital Twin Computational Model, IEEE Open Journal of Engineering in Medicine and Biology, 2024, 5, 107–124.
  • [23] GORMAN J., TAN W., ABRAHAM J., Numerical Simulation of Microwave Ablation in the Human Liver, Processes, 2022, 10 (2), 361.
  • [24] QIN Z., BALASUBRAMANIAN S.K., WOLKERS W.F., PEARCE J.A., BISCHOF J.C., Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells, Ann. Biomed. Eng., 2014, 42 (12), 2392–2404.
  • [25] SHEU T.W., CHOU C.W., TSAI S.F., LIANG P.C., Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8 (4), 229–240.
  • [26] ORTEGA-PALACIOS R., TRUJILLO-ROMERO C.J., CEPEDA-RUBIO M.F.J., LEIJA L., VERA HERNÁNDEZ A., Heat Transfer Study in Breast Tumor Phantom during Microwave Ablation: Modeling and Experimental Results for Three Different Antennas, Electronics, 2020, 9 (3), 535.
  • [27] SELMI M., BIN DUKHYIL A.A., BELMABROUK H., Numerical Analysis of Human Cancer Therapy Using Microwave Ablation, Appl. Sci., 2020, 10 (1), 211.
  • [28] TEHRANI M.H.H., SOLTANI M., KASHKOOLI F.M., RAAHEMIFAR K., Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes – A computational approach, PLoS ONE, 2020, 15 (6), e0233219.
  • [29] RADMILOVIĆ-RADJENOVIĆ M., BOŠKOVIĆ N., SABO M., RADJENOVIĆ B., An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Database, Biomedicines, 2022, 10 (7), 1569.
  • [30] 3D-IRCADb database, https://www.ircad.fr/research/3dircadb/[Accessed: 25 January 2024].
  • [31] BOŠKOVIĆ N., RADMILOVIĆ-RADJENOVIĆ M., RADJENOVIĆ B., Finite Element Analysis of Microwave Tumor Ablation Based on Open-Source Software Components, Mathematics, 2023, 11 (12), 2654.
  • [32] RADMILOVIĆ-RADJENOVIĆ M., RADJENOVIĆ D., RADJENOVIĆ B., Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues, Europhys. Lett., 2021, 136, 1363500.
  • [33] MIASKOWSKI A., GAS P., Numerical Estimation of SAR and Temperature Distributions inside Differently Shaped Female Breast Tumors during Radio-Frequency Ablation, Materials, 2023, 16 (1), 223.
  • [34] MERCADO MONTOYA M., GOMEZ BUSTAMANTE T., BERJANO E., MICKELSEN S.R., DANIELS J.D., HERNANDEZ ARANGO P., SCHIEBER J., KULSTAD E., Proactive esophageal cooling protects against thermal insults during high-power short-duration radiofrequency cardiac ablation, International Journal of Hyperthermia, 2022, 39 (1), 1202–1212.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39fe91be-fc3f-4c56-9bce-7a8c91ad2fb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.