PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tin sulphide solar cells: An analysis using a theoretical method for an approximately 24% efficacy path

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Switching to alternative energy sources is imperative at present. Solar energy is known as one of the Earth’s most cost-effective and sustainable sources of energy. Tin sulphide (SnS) is a commonly studied photovoltaic material, along with other materials such as metal chalcogenides, chalcopyrites, and perovskites. SnS possesses an appropriate band gap and an absorption coefficient within the required range, rendering it a viable material for solar cell applications. Researchers are attracted to SnS-based solar cells because of their easy-to-adjust structural parameters, plentiful availability, uncomplicated composition, and excellent mobility. This article models several characteristics of SnS-based solar cells using the SCAPS-1D simulation program. The NiO/SnS/TiO2/ITO solar cell construction may attain an efficiency of 24.0% with optimum configurations. The key criteria to be considered by researchers are the conduction band offset, the work function of the back contacts, and the radiative recombination factor (coefficient). The conduction band density of states is the least affected by the cell’s efficiency compared to other simulated metrics. This research may provide valuable information on the potential of SnS-based solar cells to achieve high efficiency.
Słowa kluczowe
Wydawca
Rocznik
Strony
92--100
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • Department of Physics, College of Science, University of BishaBisha 61922, Saudi Arabia
  • Department of Physical Sciences, Physics Division, College of Science, Jazan University Jazan 45142 Saudi Arabia
  • Department of Physics, College of Science, University of BishaBisha 61922, Saudi Arabia
  • Department of Physical Sciences, Physics Division, College of Science, Jazan UniversityJazan 45142, Saudi Arabia
  • Department of Physical Sciences, Physics Division, College of Science, Jazan University Jazan 45142, Saudi Arabia
  • Department of Physics, College of Science, Majmaah University Majmaah, 11952, Saudi Arabia
  • Department of Physics, Al-Qunfudah University College, Umm Al-Qura University Makkah 21955, Saudi Arabia
  • Department of Electrical Engineering, College of Engineering, University of Prince Mugrin Madinah, Saudi Arabia
autor
  • Department of Physics, College of Science, Taif UniversityTaif 21944, Saudi Arabia
  • Department of Mathematics, College of Science, Jazan University Jazan 45142, Saudi Arabia
Bibliografia
  • [1] Yang, J., Zhang, P., Wang, J., Wei, S.H., Theoretical investigation of halide perovskites for solar cell and optoelectronic applications, Chin. Phys. B, 2020, 29: 108401
  • [2] Shariq, M., Alzahrani, A., Almutib, E., Alharbi, A.F., Algarni, S.A., Almashnowi, M.Y.A., et al., Harnessing the potential of NiMn2O4 nanoparticle: A next-generation supercapacitor electrode material, Phys. Scr., 2024, 99: 0035941
  • [3] Arivazhagan, V., Hang, P., Parvathi, M.M., Tang, Z., Khan, A., Yang, D., et al., All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer, Nanotechnology, 2019, 31(6): 065401
  • [4] Dai, P., Lu, J., Tan, M., Wang, Q., Wu, Y., Ji, L., et al., Transparent conducting indium-tin-oxide (ITO) film as full front electrode in III–V compound solar cell, Chin. Phys. B, 2017, 26: 037305
  • [5] Ansari, Z.A., Singh, T.J., Islam, S.M., Singh, S., Mahala, P., Khan, A., et al., Photovoltaic solar cells based on graphene/gallium arsenide Schottky junction, Optik, 2019, 182: 500–506
  • [6] Alasmari, A., Shariq, M., Alhazmi, N.E., Alzahrani, H.S., Bouzgarrou, S.M., Alkhayri, F., et al., Enhancing perovskite solar cells with graphene-based nanocomposites for sustainable energy: A comprehensive review, Diam. Relat. Mater., 2024, 148: 111517
  • [7] Khan, A., Kumar, R.R., Cong, J., Imran, M., Yang, D., Yu, X., CVD Graphene on textured silicon: An emerging technologically versatile heterostructure for energy and detection applications, Adv. Mater. Interfaces, 2022, 9(1): 2100977
  • [8] Farji, M., Development of photovoltaic cells: A materials prospect and next-generation futuristic overview, Braz. J. Phys., 2021, 51: 1916–1928
  • [9] Kumar, M., Rani, S., Vashishtha, P., Gupta, G., Wang, X., Singh, V.N., Exploring the optoelectronic properties of SnSe: A new insight, J. Mater. Chem. C., 2022, 10(44): 16714–16722
  • [10] Singh, Y., Rani, S., Shashi, Parmar, R., Kumari, R., Kumar, M., et al., Sb2Se3 heterostructure solar cells: Techniques to improve efficiency, Sol. Energy, 2023, 249(September 2022): 174–182. DOI:10.1016/j.solener.2022.11.033
  • [11] Kumar, M., Rani, S., Pandey, A., Gour, K.S., Husale, S., Singh, P., et al., Highly responsive, low-bias operated SnSe2 nanostructured thin film for trap-assisted NIR photodetector, J. Alloy. Compd., 2020, 838: 155384
  • [12] Priezzhev, A.V., Tuchin, V.V., Lugovtsov, A.E., Kirillin, M.Y., Structural, optical and photoluminescence investigations of nanocrystalline CuO thin films at different microwave powers, Opt. Quant. Electron., 2022, 52: 1–16
  • [13] Lindwall, G., Shang, S., Kelly, N.R., Anderson, T., Liu, Z.K., Thermodynamics of the S–Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials, Sol. Energy, 2016, 125: 314–323
  • [14] Vidal, J., Lany, S., d’Avezac, M., Zunger, A., Zakutayev, A., Francis, J., et al., Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS, Appl. Phys. Lett., 2012, 100(3): 032104
  • [15] Javed, A., Khan, N., Bashir, S., Ahmad, M., Bashir, M., Thickness dependent structural, electrical and optical properties of cubic SnS thin films, Mater. Chem. Phys., 2020, 246: 122831
  • [16] Xin, C., Zheng, J., Su, Y., Li, S., Zhang, B., Feng, Y., et al., Few-layer tin sulfide: A new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility, J. Phys. Chem. C., 2016, 120(39): 22663–22669
  • [17] Abass, K.H., Adil, A., Alrubaie, A.J., Rabee, B.H., Kadim, A.M., Talib, S.H., et al., Fabrication and characterization of p-SnS/n-Si solar cell by thermal evaporation technique and the effect of Ag-doped on its efficiency, Int. J. Nanosci., 2023, 22(01): 2350003
  • [18] Lasisi, A., Fabrication and characterization of tin sulphide SnS based thin film solar cells, Asian J. Sci. Technol., 2016, 7(11): 3887–3890
  • [19] Cho, J.Y., Kim, S., Nandi, R., Jang, J., Yun, H.S., Enkhbayar, E., et al., Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality, J. Mater. Chem. A, 2020, 8(39): 20658–20665
  • [20] Voznyi, A.A., Bilousov, O.V., Landeke-Wilsmark, B., Keller, J., Ren, J., Zhang, S.L., et al., Ultrathin solar cells based on atomic layer deposition of cubic versus orthorhombic tin monosulfide, ACS Appl. Energy Mater., 2021, 4(8): 8085–8097
  • [21] Hartman, K., Annealing for intrinsic point-defect control and enhanced solar cell performance: the case of H₂S and tin sulfide (SnS), Massachusetts Institute of Technology, United States, 2015
  • [22] Sinsermsuksakul, P., Sun, L., Lee, S.W., Park, H.H., Kim, S.B., Yang, C., et al., Overcoming efficiency limitations of SnS‐based solar cells, Adv. Energy Mater., 2014, 4(15): 1400496
  • [23] Lim, D., Suh, H., Suryawanshi, M., Song, G.Y., Cho, J.Y., Kim, J.H., et al., Kinetically controlled growth of phase‐pure SnS absorbers for thin film solar cells: Achieving efficiency near 3% with long‐term stability using an SnS/CdS heterojunction, Adv. Energy Mater., 2018, 8(10): 1702605
  • [24] Madkhali, O., A review of novel methods to improve the optical and electrical properties of n-type and p-type sulphides and oxides: leading the frontiers of semiconductor technology, Phys. Scr., 2024, 99: 022004
  • [25] Jaramillo, R., Steinmann, V., Yang, C., Hartman, K., Chakraborty, R., Poindexter, J.R., et al., Making record-efficiency SnS solar cells by thermal evaporation and atomic layer deposition, JoVE (J. Vis. Exp.), 2015, 99:e52705
  • [26] Gupta, Y., Arun, P., Optimization of SnS active layer thickness for solar cell application, J. Semicond., 2017, 38(11): 113001
  • [27] Kawanishi, S., Suzuki, I., Bauers, S.R., Zakutayev, A., Shibata, H., Yanagi, H., et al., SnS homojunction solar cell with n‐type single crystal and p‐type thin film, Sol. RRL, 2021, 5(4): 2000708
  • [28] Wang, Y., Gong, H., Fan, B., Hu, G., Photovoltaic behavior of nanocrystalline SnS/TiO2, J. Phys. Chem. C., 2010, 114(7): 3256–3259
  • [29] Yun, H.S., Park, B., Choi, Y.C., Im, J., Shin, T.J., Seok, S.I., Efficient nanostructured TiO2/SnS heterojunction solar cells, Adv. Energy Mater., 2019, 9(35): 1901343
  • [30] Islam, M.E., Islam, M.R., Ahmmed, S., Hossain, M.K., Rahman, M.F., Highly efficient SnS-based inverted planar heterojunction solar cell with ZnO ETL, Phys. Scr., 2023, 98(6): 065501
  • [31] Islam, M., Thakur, A., Multistep design simulation of heterojunction solar cell architecture based on SnS absorber, Phys. Scr., 2023, 98(10): 105950
  • [32] Ray, S.P., Lohia, P., Dwivedi, D., Engineering in SnS-based solar cell for an efficient device with nickel oxide (NiO) as the hole transport layer, Adv. Mater. Lett., 2021, 12(9): 1
  • [33] Burgelman, M., Decock, K., Khelifi, S., Abass, A., Advanced electrical simulation of thin film solar cells, Thin Solid. Films, 2013, 535: 296–301
  • [34] Burgelman, M., Nollet, P., Degrave, S., Modelling polycrystalline semiconductor solar cells, Thin Solid. Films, 2000, 361: 527–532
  • [35] Kumar, M., Rani, S., Singh, Y., Mamta, Kumar, A., Singh, V.N., Strategy to improve the efficiency of tin selenide based solar cell: A path from 1.02 to 27.72%, Sol. Energy, 2022, 232: 146–153
  • [36] Mouchou, R., Jen, T.C., Laseinde, O.T., Ukoba, K.O., Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS, Mater. Today Proc., 2021, 38: 835–841
  • [37] Garain, R., Basak, A., Singh, U.P., Study of thickness and temperature dependence on the performance of SnS based solar cell by SCAPS-1D, Mater. Today Proc., 2021, 39: 1833–1837
  • [38] Yadav, R.K., Pawar, P.S., Nandi, R., Neerugatti, K.E., Kim, Y.T., Cho, J.Y., et al., A qualitative study of SnSe thin film solar cells using SCAPS 1D and comparison with experimental results: A pathway towards 22.69% efficiency, Sol. Energy Mater. Sol Cell, 2022, 244: 111835
  • [39] Selim, M.S., Gouda, M.E., El-Shaarawy, M.G., Salem, A.M., Abd El-Ghany, W.A., Effect of thickness on optical properties of thermally evaporated SnS films, Thin Solid. Films, 2013, 527: 164–169
  • [40] Wang, S.F., Wang, W., Fong, W.K., Yu, Y., Surya, C., Tin compensation for the SnS based optoelectronic devices, Sci. Rep., 2017, 7(1): 39704
  • [41] Tiwari, P., Alotaibi, M.F., Al-Hadeethi, Y., Srivastava, V., Arkook, B., Sadanand, S., et al., Design and simulation of efficient SNS-based solar cell using spiro-OMeTAD as hole transport layer, Nanomaterials, 2022, 12(14): 1–9
  • [42] Gholami-Milani, A., Ahmadi-Kandjani, S., Olyaeefar, B., Kermani, M.H., Performance analyses of highly efficient inverted all-perovskite bilayer solar cell, Sci. Rep., 2023, 13(1): 8274
  • [43] Kirchartz, T., Rau, U., What makes a good solar cell?,Adv. Energy Mater., 2018, 8(28): 1703385
  • [44] Zaid, M., Altowairqi, Y., Majid, S.S., Somvanshi, A., Shariq, M., Ali, S.K., et al., Comparative structural, optical, and dielectric studies of Zn1−x Mnx/2Ax/2O (A = Ni, Co and x = 0.24) nanoparticles, Appl. Phys. A, 2022, 128(11): 1002
  • [45] Rehman, F., Dahshan, A., Yakout, H.A., Shariq, M., Ahmad, P., Saeed, Y., Tuning the optical properties through bandgap engineering in Si-doped YAuPb: Ab initio study, J. Comput. Electron., 2022, 21(1): 119–127
  • [46] Shuai, Z., Cheng, S., Thermally evaporated SnS: Cu thin films for solar cells, 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, 2011
  • [47] Kirchartz, T., Rau, U., What makes a good solar cell?, Adv. Energy Mater., 2018, 8(28): 1703385
  • [48] Fell, A. Niewelt, T., Steinhauser, B., Heinz, F.D., Schubert, M.C., Glunz, S.W., The radiative recombination coefficient of silicon: Reassessment of its charge carrier density dependence, 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), IEEE, 2021
  • [49] Trupke, T., Green, M.A., Würfel, P., Altermatt, P.P., Wang, A., Zhao, J., et al., Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon, J. Appl. Phys., 2003, 94(8): 4930–4937
  • [50] Gray, J.L., The physics of the solar cell, Handbook of photovoltaic science and engineering, Vol. 2, 2011, pp. 82–128
  • [51] Balakrishnan, J. Preethi, J., Kushvaha, L.K., Mayandi, S.S., Colloidal quantum dot photodetectors for infrared imaging, in types of photodetectors and their applications, Nova Science Publishers, Inc, Suite N Hauppauge, NY, USA, 2022, pp. 203–240
  • [52] Kumar, A., Thakur, A.D., Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell, Jpn. J. Appl. Phys., 2018, 57(8S3): 08RC05
  • [53] Ikuno, T., Suzuki, R., Kitazumi, K., Takahashi, N., Kato, N., Higuchi, K., SnS thin film solar cells with Zn1−xMgxO buffer layers, Appl. Phys. Lett., 2013, 102(19): 193901
  • [54] Nair, K.K., Jose, J., Ravindran, A., Analysis of temperature dependent parameters on solar cell efficiency using MATLAB, IJEDR, 2016, 4: 536–541
  • [55] Gohri, S., Madan, J., Pandey, R., Sharma, R., Assessment of WSe2 based BSF layer on CZTSSe solar cell using SCAPS-1D, IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021. DOI:10.1109/PVSC43889.2021.9518825
  • [56] Alok, K.P., Bramha, P.P., Performance analysis of WS2 TMD material as an absorber layer used in solar cell, 2020 International Conference on Electrical and Electronics Engineering (ICE3-2020), 2020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39fa28db-4360-4044-8c4a-ea8d3ca7baf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.