PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical small punch tests of the 14cr ods ferritic steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, various small specimen test techniques have gained wide popularity and appreciation among researchers as they offer undoubtful benefits in terms of structural material characterisation. This paper focuses on small punch tests (SPTs) performed on small-sized disc specimens to assess the mechanical properties of 14Cr oxide dispersion strengthened (ODS) steel. A numerical model was established to support experimental data and gain deeper insight into complex strain states developing in a deformed specimen. Modern evaluation procedures were discussed for obtaining mechanical properties from the small punch force-deflection response and were compared with the literature. Applicability and universality of those relations at different test conditions were also studied. It appeared that different ball diameters used had negligible influence on yield point but strongly affected ultimate strength estimation. It was found that friction belongs to decisive factors determining strain distribution in samples, as dry conditions increase the peak strain and move its location farther from the punch pole.
Rocznik
Strony
225--232
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
  • Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Corwin WR, Rosinski ST, van Walle E. Small Specimen Test Tech-niques. Philadelphia (PE): Society for Testing and Materials; 1998.
  • 2. Chen H, Hyde TH. Use of multi-step loading small punch test to investigate the ductile-to-brittle transition behaviour of a thermally sprayed CoNiCrAlY coating. Mater Sci Eng A. 2017;680:203-209.
  • 3. Contreras M, Rodríguez C, Belzunce FJ, Betegón C. Use of the small punch test to determine the ductile-to-brittle transition tempera-ture of structural steels. Fatigue Fract Eng Mater Struct. 2008;31(9):727-737.
  • 4. Jaya BN, Alam Z. Small-scale mechanical testing of materials. Curr Sci. 2013;105(8);1073-1099.
  • 5. Bruchhausen M, Holmström S, Simonovski I, Austin T, Lapetite J-M, Ripplinger S, de Haan F. Recent developments in small punch test-ing: Tensile properties and DBTT. Theor Appl Fract Mech. 2016;86(A):2-10.
  • 6. Oksiuta Z, Lewandowska M, Kurzydłowski KJ. Mechanical properties and thermal stability of nanostructured ODS RAF steels. Mech Mater. 2013;67:15-24.
  • 7. Okuda N, Kasada R, Kimura A. Statistical evaluation of anisotropic fracture behavior of ODS ferritic steels by using small punch tests, J Nucl Mater. 2009;386-388:974-978.
  • 8. Shimomura Y, Spears W. Review of the ITER Project, IEEE Trans Appl Supercond. 2004;14(2):1369-1735.
  • 9. Motojima O. The ITER project construction status. Nucl Fusion. 2015;55(10):104023.
  • 10. Zinkle SJ. Challenges in Developing Materials for Fusion Technology - Past, Present and Future. Fusion Sci Technol. 2017;64(2):65-75
  • 11. Zhao Q, Ma Z, Yu L, Li H, Liu C, Li C, Liu Y. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment. J Mater Sci Technol. 2019;35(6):1064-1073.
  • 12. Zhang L, Yu L, Liu Y, Liu C, Li H, Wu J. Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels. Mater Sci Eng A. 2017;695:66–73.
  • 13. Li W, Hao T, Gao R, Wang X, Zhang T, Fang Q, Liu C. The effect of Zr, Ti addition on the particle size and microstructure evolution of yt-tria nanoparticle in ODS steel. Powder Technol. 2017;319:172–182.
  • 14. Oksiuta Z, Mueller P, Spätig P, Baluc N. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel. J Nucl Mater. 2011;412(2): 221-226.
  • 15. Oksiuta Z, Ozieblo A, Perkowski K, Osuchowski M, Lewandowska M. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel. Fusion Eng Des. 2014;89(2):137-141.
  • 16. Li Y, Shen J, Li F, Yang H, Kano S, Matsukawa Y, Muroga T. Effects of fabrication processing on the microstructure and mechanical properties of oxide dispersion strengthening steels. Mater Sci Eng A. 2016;654:203-212.
  • 17. Zhao Q, Yu L, Liu Y, Huang Y, Ma Z, Li H, Wu J. Microstructure and tensile properties of a 14Cr ODS ferritic steel. Mater Sci Eng A. 2017;680:347-350.
  • 18. De Sanctis M, Fava A, Lovicu G, Montanari R, Richetta M, Testani C, Varone A. Mechanical Characterization of a Nano-ODS Steel Pre-pared by Low-Energy Mechanical Alloying. Metals. 2017;7(8): 283.
  • 19. Murty K, Charit I. An Introduction to Nuclear Materials: Fundamentals and Applications. Weinheim (DE): Wiley-VCH; 2013.
  • 20. Karthik V, Kasiviswanathan KV, Raj B. Miniaturized Testing of Engi-neering Materials. Boca Raton (FL): CRC Press; 2017.
  • 21. Simonovski I, Holmström S, Bruchhausen M. (2017), Small punch tensile testing of curved specimens. Int J Mech Sci. 2017;120: 204-213.
  • 22. Manahan M, Argon A, Harling O. The development of a miniaturised disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater. 1981;104:1545-1550.
  • 23. Altstadt E, Ge HE, Kuksenko V, Serrano M, Houska M, Lasan M, Bruchhausen M, Lapetite J-M, Dai Y. Critical evaluation of the small punch test as a screening procedure for mechanical properties. J Nucl Mater. 2016;472:186-195.
  • 24. Lucon E, Benzing J, Hrabe N. Development and Validation of Small Punch Testing at NIST. Gaithersburg (MD): National Institute of Standards and Technology; 2020. doi: 10.6028/NIST.IR.8303
  • 25. Yang SS, Ling X, Qian Y, Ma RB. Yield Strength Analysis by Small Punch Test Using Inverse Finite Element Method. Procedia Eng. 2015;130:1039-1045.
  • 26. Moreno MF, Bertolino G, Yawny A. The significance of specimen displacement definition on the mechanical properties derived from Small Punch Test. Mater Des. 2016;95, 623–631.
  • 27. Sánchez-Ávila D, Orozco-Caballero A, Martínez E, Portolés L, Barea R, Carreño F. High-accuracy compliance correction for nonlinear mechanical testing: Improving Small Punch Test characterization. Nucl Mater Energy. 2021;26:100914.
  • 28. Campitelli EN, Spätig P, Bonadé R, Hoffelner W, Victoria M. As-sessment of the constitutive properties from small ball punch test: experiment and modelling. J Nucl Mater. 2004;335(3):366–378.
  • 29. Kalidindi SR, Abusafieh A, El-Danaf E. Accurate characterization of machine compliance for simple compression testing. Exp Mech. 1997;37(2);210–215.
  • 30. García TE, Rodríguez C, Belzunce FJ, Suárez C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd. 2014;582:708–717.
  • 31. Mao X, Takahashi H. Development of a further-miniaturized speci-men of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater. 1987;150(1):42–52.
  • 32. Prakash RV, Arunkumar S. Influence of Friction on the Response of Small Punch Test. Trans Indian Inst Met. 2016;69(2):617-622.
  • 33. Haroush S, Priel E, Moreno D, Busiba A, Silverman I, Turgeman A, Gelbstein Y. Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater Des. 2015;83:75-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39f6b51f-4d16-41eb-b458-0258055f3837
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.