PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An approximate method for calculating the resistance of a transport ship model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents regression formulas for calculating the friction resistance RF and the total resistance RT of ship models in the 2.0–10.0 m range. The method for calculating the total resistance is novel and applies to the design models of an unmanned surface vessel (USV) for experimental testing of autonomous control. For both regression models (RF and RT), statistical and substantive tests were performed (the results of the calculations were compared with the experimental measurements). In both cases, convincing results were obtained, which have confirmed the possibility of their use at the preliminary design stage of unmanned ship models.
Rocznik
Strony
64--71
Opis fizyczny
Bibliogr. 13 poz., rys. tab.
Twórcy
  • Maritime University of Szczecin, Faculty of Navigation 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
  • Maritime University of Szczecin, Faculty of Navigation 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Ebrahimi, A. (2012) Numerical Study on Resistance of a Bulk Carrier Vessel Using CFD Method. Journal of the Persian Gulf (Marine Science) 3, 10, pp. 1–6.
  • 2. Hollenbach, K.U. (1998) Estimating resistance and propulsion for single-screw and twin-screw ships. Ship Technology Research 45, part 2, pp. 72–76.
  • 3. Holtrop, J. (1984) A statistical re-analysis of resistance and propulsion data. International Shipbuilding Progress 28 (363), pp. 272–276.
  • 4. ITTC Performance (1957) Propulsion 1957 ITTC Performance Prediction Method.
  • 5. Kinaci, O.K. & Gokce, M.K. (2015) A computational hydrodynamic analysis of Duisburg Test Case with free surface and propeller. Brodogradnja/Shipbuilding 66, 4, pp. 23–38.
  • 6. Kulczyk, J. & Słomka, A. (1988) Analiza regresyjna wyników badań modelowych statków śródlądowych. XIII Sesja Naukowa Okrętowców, Gdańsk, pp. 101–111.
  • 7. Lohne, R. et al. (2011) Lab test1: Resistance test with ship model, including set-up and calibration. TMR 7 Experimental Methods in Marine Hydrodynamics.
  • 8. Moctar, O., Shigunov, V. & Zorn, T. (2012) Duisburg Test Case: Post-Panamax Container Ship for Benchmarking. Ship Technology Research Schiffstechnik 59, 3, pp. 50–64.
  • 9. Molland, A.F., Turnock S.R. & Hudson, D.A. (2011) Ship Resistance and Propulsion. Practical Estimation of Ship Propulsive Power. Cambridge University Press.
  • 10. Ocean News & Technology (2017) Kongsberg Maritime: New Norwegian Autonomous Shipping Test-Bed Opens. [Online] 08 December 2017. Available from: https://www. oceannews.com/news/science-technology/kongsberg-maritime-new-norwegian-autonomous-shipping-test-bed-opens [Accessed: June 19, 2019].
  • 11. Ozdemir, Y.H. & Barlas, B. (2017) Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model. International Journal of Naval Architecture and Ocean Engineering 9 (2), pp. 149–159.
  • 12. Skupień, E. & Prokopowicz, J. (2014) Methods of calculating ship resistance on limited waterways. Polish Maritime Research 21, 4, pp. 12–17.
  • 13. Sukas, Ö.F., Kinaci, O.K. & Bal, S. (2014) Computation of total resistance of ships and a submarine by a RANSE based CFD. Conference: INT-NAM 2014, At Istanbul, Turkey, vol. 2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39f5d0fd-c28e-4a81-8407-0ee9a5f5fc26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.