PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of the processes of burning lignite in a vortex furnace with swirling countercurrent flows

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the results of a numerical study of the working processes of burning lignite in a vortex furnace with swirling countercurrent flows. The results of computer simulation of the processes of burning lignite with a moisture content of 30%, an ash content of 20% and 35% and a higher calorific value of Qрв = 13.9 MJ/kg and 9.7 MJ/kg, respectively are given. The fields of temperature distribution, gas velocity and particle trajectory in the volume and at the outlet of the furnace are determined. The values of the swirling flow velocity near the exit from the furnace reach 150-170 m/s. Mechanical underburning is 3.7% and 9.4% depending on the ash content. The results of a numerical study have showed that the diameter of lignite particles affects their combustion process: coke particles with an initial diameter from 25 microns to 250 microns burn out by 96%. The furnace provides a complete combustion of pulverized coal particles - 99.8% and of volatiles - 100% at volumetric heat stress in the 2500 kW/m3 furnace. The afterburning of fuel particles containing carbon is ensured by their circulation.
Rocznik
Strony
141--149
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Kharkiv National University of Civil Engineering and Architecture, 61002, Kharkiv, st. Sumska, 40, Ukraine
  • Kharkiv National University of Civil Engineering and Architecture, 61002, Kharkiv, st. Sumska, 40, Ukraine
  • Kharkiv National University of Civil Engineering and Architecture, 61002, Kharkiv, st. Sumska, 40, Ukraine
  • Kharkiv National University of Civil Engineering and Architecture, 61002, Kharkiv, st. Sumska, 40, Ukraine
autor
  • Kharkiv National University of Civil Engineering and Architecture, 61002, Kharkiv, st. Sumska, 40, Ukraine
  • Kharkiv National University of Civil Engineering and Architecture, 61002, Kharkiv, st. Sumska, 40, Ukraine
autor
  • Ukrainian State university of railway transport, 61002, 61050, Kharkiv Maidan Feiєrbakh 7, Ukraine
Bibliografia
  • 1. Anikin, Yu.A., et al., 2012. Vortex steam generator of a new type modeling of furnace processes. Proceedings of VIII All-Russian Conference with the International Part “Combustion of Solid Fuel” Institute of Thermo-physics named after S.S. Kutateladze SORAN, 51-66.
  • 2. Baskakov, A.P., Matsnev, V.V., Raspopov, I.V., 1995. Fluidized Bed Boilers and Furnaces. – M.: Energoatomizdat, 352.
  • 3. Basu, P., 2010. Biomass gasification and pyrolysis. Practical design and theory, Elsevier, 352.
  • 4. Blaszczyk, A. et al., 2017. Effect of bed particle size on heat transfer between fluidized bed of group B particles and vertical rifled tubes. Powder Technology, 11(316), 111.10.1016/j.powtec.2016.12.027
  • 5. Chernyavsky, N.V., 2012. On the prospects and features of the use of coal in industry and municipal energy, Art. Modern Science, 1(9).
  • 6. Decomposition of Pulverized Coal Particles. Ind. Eng. Chem. Process Design and Development, 1970.
  • 7. Grigoriev, K.A., 2009. Experience in the Applica-tion of Vortex Low-temperature Combustion Technology on a Boiler BKZ - 220 – 100, Energetik, 1, 24-26.
  • 8. Hong, G., Paul, G., Arias, A., et al., 2016. Direct numerical simulations of statistically stationary turbulent premixed flames. Combustion Science and Technology, 188(8), 1182-1198.10.1080/00102202.2016.1198789
  • 9. Jones, 1982. Calculation Methods for Reacting Turbulent Flows: A Review. Combust, Flame, Whitelaw.10.1016/0010-2180(82)90112-2
  • 10. Krou, 1982. Chislennye modeli techenii gaza s nebolshym soderjaniem chas-tits (Numerical models of gas flows with a small content of particles). Teoreticheskie osnovy inzhenernykh raschetov, (In Russian).
  • 11. Launder, B.E., Spalding, D.B., 1972. Lectures in Mathematical Models of Turbulence, London, Academic Press, 169.
  • 12. Likhacheva, G.N., 2004. Prospects for the use of vortex furnace devices for burning low-grade fuels, Polzunovskiy Bulletin, 1.
  • 13. Loitsyanskii, L.G., 1978. Mekhanika jydkosti i gaza (Mechanics of Fluid and Gas), Nauka, (In Russian).
  • 14. Munts, V.A., Pavlyuk, E.Yu, 2005. Fundamentals of the Theory of Fuel Combustion - Manual: USTU - UPI, 102.
  • 15. Nechaev, E.V., Lubin, A.F., 1968. Mechanical furnaces for small and medium power boilers. Energy, 311.
  • 16. Pitsukha, E.A., 2019. Scientific basis for the creation of highly efficient cyclone-layered combustion devices for boilers operating on solid biofuel. Diss. Minsk.
  • 17. Pomerant ev, V.V. and others, 1986. Fundamentals of the Practical Theory of Combustion - Energoatomizdat, 312.
  • 18. Puzyrev, E.M. 2003. Study of furnace processes and development of boilers for low-temperature combustion of combustible waste and local fuels. - diss. d.t.s. Barnaul.
  • 19. Redko, A., Burda, Y., Dzhyoiev, R., Redko, I., Norchak, V., Pavlovskiiy, S., Redko, O., 2020. Numerical modeling of peat burning processed in a vortex furnace with countercurrent swirl flows. Thermal Science, 19, 158-177, DOI: 10.2298/TSCI190305158R10.2298/TSCI190305158R
  • 20. Redko, I., Redko, A., Pavlovskiiy, S., Redko, O., Burda, Y., Ujma, A., 2021. Energy efficiency of buildings in the cities of Ukraine under the conditions of sustainable development of centralized heat supply system, Energy and Buildings Available online 26 March, 110947, DOI: 10.1016/j.enbuild.2021.11094710.1016/j.enbuild.2021.110947
  • 21. Rundygin, Yu. A., et al., 2000. Modernization of boilers based on low-temperature vortex technology for burning solid fuels. Energy: economics, technology, ecology, 4, 19-22.
  • 22. Ryabov, G.A., Folomeev, O.M., Litun, D.S., 2021. Developments of OAO VTI in the field of fluidized bed for efficient and environmentally friendly use of solid fuels. Power stations, 6.10.1007/s10749-021-01403-2
  • 23. Safarik, P., Maximov, V.Yu., Bolegenova, S.A., et al., 2019. 3D modeling of combustion thermochemical activated fuel. News of the national academy of sciences of the Republic of Kazakhstan-series physico-mathematical, 2(324), 9-16.
  • 24. Salomatov, V.V., 2012. The Results of Studies of Furnace Pro-cesses in Boilers with Vortex Combustion Technology. Thermal Engineering, 6, 7-14.10.1134/S0040601512060109
  • 25. Sazhyn, B.S., Gudim, L.I., 1995. Vikhrevye pyleuloviteli (Vortex Dust Collectors), Khimiia,.(In Russian).
  • 26. Serant, F.A. and others, 1988. Circular Furnaces of Pul-varized-Coal Boilers - Almaty: Nauka, 168.
  • 27. Shchurenko, V.P. et al., 2004. Modeling and development of low-temperature vortex furnace devices. Polzunovskiy Bulletin, 1.
  • 28. Shestakov, S.M., Aronov, A.L., 2014. Technology of Combustion of Local Solid Fuel Types, ESCO.
  • 29. Sreenivasan, B., Raghavan, V.R., 2002. Hydrodynamics of a swirling fluidized bed. Chem. Eng. Process, 91, 99.10.1016/S0255-2701(00)00155-0
  • 30. Surzhikov, S.T., 2004. Teplovoe izluchenie gazov I plazmy (Thermal Radiation of Gases and Plasma). Moskva, 544 (In Russian).
  • 31. Tikhonov, S.B., Belomestnov, Yu.A., 2020. Combustion of brown coals in furnaces with a low-temperature fluidized bed with a vertical vortex. Electricity of the net, (Electronic resource: leg.co.ua/generacija/arhiv/).
  • 32. Vandoormaal, J.P., Raithby, G.D., 1984. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer. Heat Transfer..10.1080/01495728408961817
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39f4195f-191a-43aa-bae2-fdfa48eea6ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.