PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ cementacji na zachowanie się gruntów pod fundamentami budynków w trakcie trzęsienia ziemi

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effects of cement grouting on seismic performance of building foundations
Języki publikacji
PL EN
Abstrakty
PL
W ostatnich dziesięcioleciach wzniesiono dużo budynków na gruntach wątpliwej jakości, co było spowodowane szybkim wzrostem urbanizacji. Spowodowało to wzrost zagrożenia w przypadku wystąpienia trzęsienia ziemi na tych terenach, zwłaszcza jeżeli nie zastosowano w trakcie budowy odpowiednich rozwiązań inżynierskich. Stosuje się cementację gruntu w celu poprawy sejsmicznych właściwości fundamentów, a jego efektywność sprawdzono przez pomiar przeważającego okresu drgań gruntu i szybkości fali ścinającej. Średni wynik pomiarów przeważającego okresu i szybkości fali zmienił się odpowiednio z 0,58 s na 0,23 s i z 374 m/s na 449 m/s. Poprawa właściwości gruntu osiągnęła ponad 50%. Ten wynik pokazuje, że cementacja może korzystnie zmienić zachowanie się słabych sejsmicznie fundamentów budynków w przypadku trzęsienia ziemi. Można więc polecać tę metodę do zmniejszenia ryzyka, związanego z aktywnością sejsmiczną, dla istniejących budynków.
EN
In last decades a large number of buildings is being constructed on problematic soils because of rapid urbanization It causes growing earthquake risks in such areas if combined with lack of engineering. Grouting of ground is being employed to improve seismic performance of foundations and its effectiveness has been verified by examination of predominant period of ground vibration and shear wave velocity. The average period and shear wave velocity of ground was changed from 0.58 s to 0.23 s and 374 m/s to 449 m/s, respectively. The improvement of ground properties reached more than 50%. The results show that grouting can improve earthquake performance of seismically weak building foundations. Thus it can be advised to mitigate the seismic risk of existing buildings.
Czasopismo
Rocznik
Strony
313--321
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
  • Dept. of Geo. Engineering, Pamukkale University, Denizli, Turkey
autor
  • Dept. of Geo. Engineering, Pamukkale University, Denizli, Turkey
Bibliografia
  • 1. U.S. Army, Guidelines on Ground Improvement for Structures and Facilities. U.S. Army Corps of Engineers, ETL 1110-1-185, Washington 2003.
  • 2. T. D. Stark, P. J. Axtell, J. R. Lewis, J. C. Dillon, W. B. Empson, J. E. Topi, F. C. Walberg, Soil inclusions in jet grout columns. DFI Journal, 3, 1, 33-44 (2009).
  • 3. H. Seo, K. Jeong, H. Choi, I. Lee, Pullout resistance increase of soil nailing induced by pressurized grouting. Journal of Geotechnical and Geoenvironmental Engineering, 138, 5, 604–613 (2012).
  • 4. H. Shimada, A. Hamanaka, T. Sasaoka, K. Matsui, Behaviour of grouting material used for floor reinforcement in underground mines. International Journal of Mining, Reclamation and Environment, http://dx.doi.org/10.1080/17480930.2013.804257, 2013, 1-16.
  • 5. S. Li, W. Zhao, Y. Huang, Y. Lei, L. Yu, Study on the characteristics of grout permeation based on cylindrical diffusion. Journal of Coal Science and Engineering (China), 19, 1, 57-62 (2013).
  • 6. E. Akyol, Strengthening foundations of seismically weak buildings on sandy soils in Denizli, Turkey. Environmental Earth Sciences, 66, 5, 1415-1421 (2012).
  • 7. B. Indraratna, J. Chu, Ground Improvement: Case Histories. Elsevier, Amsterdam 2005.
  • 8. M. P. Moseley, K. Kirsch, Ground Improvement. Spon Press, New York 2004.
  • 9. J. Warner, Practical Handbook of Grouting: Soil, Rock, and Structures. John Wiley & Sons, New Jersey 2004.
  • 10. H. I. Ling, D. Leshcinsky, F. Tatsuoka, Reinforced Soil Engineering: Avances in Research and Practice. Marcel Dekker, New York 2003.
  • 11. D. Harrison, The Grouting Handbook: A Step-by-Step Guide to Heavy Equipment Grouting. Gulf Publishing, Houston 2000.
  • 12. A. Fransson, M. Zetterlund, G. Gustafson, J. Funehag, L. Hernqvist, C. Butrön, A Swedish grouting design concept: hydraulic testing and selection of grout. In: L. F. Johnsen, D. A. Bruce, M. J. Byle, (Eds.), Grouting and Deep Mixing, 1691-1700, ASCE 2012.
  • 13. Z. F. Wang, S. L. Shen, C. E. Ho, Y. H. Kim, Jet grouting practice: an overview. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 44, 4, 88-96 (2013).
  • 14. Byle M. J., Borden R. H., Verification of Geotechnical Grouting (A Report from the ASCE Committee on Grouting of the Geotechnical Engineering Division). Geotechnical Special Publication No: 57, American Society of Civil Engineers, San Diego (1995).
  • 15. P. M. Gallagher, Passive Site Remediation for Mitigation of Liquefaction Risk. PhD thesis, Virginia Polytechnic Institute, Blackburg 2000.
  • 16. N. Turk, W. R. Dearman, Assessment of grouting efficiency in a rock mass in terms of seismic velocities. Bulletin of the International Association of Engineering Geology, 36, 1, 101-108 (1987).
  • 17. G. Fallon, B. Zhou, A. King, P. Hatherly, Geophysical Assessment of Fracture Grouting. Australian Coal Association Program (ACARP) Report, Project No: C11056, Brisbane 2004.
  • 18. USDP, Geophysical Grouting Control Systems. U.S. Department of Transportation, Report No: DOT/RSPA/DMA-50/83/2, Washington (1983).
  • 19. A. Hashad, Y. El-Hakem, A. El-Ashaal, Improving seismic resistance of hydraulic structures using soil improvement techniques. Sixteenth International Water Technology Conference, Istanbul, Turkey, 7-10 May 2012.
  • 20. K. Suzuki, T. Oyama, F. Kawashima, T. Tsukada, A. Jyomori, Monitoring of grout material injected under a reservoir using electrical and electromagnetic surveys. Exploration Geophysics, 41, 1, 69–79 (2009).
  • 21. Z. Y. Yang, H. W. Huang, J. Yue, Research on impact of grouting material on seismic performance of tunnel in soft soil. Advanced Materials Research, 160-162, 1056-1061 (2010).
  • 22. R. D. Andrus, R. M. Chung, Ground Improvement Techniques for Liquefaction Remediation Near Existing Lifelines. National Institute of Standards and Technology Report, NISTIR 5714, Gaithersburg, MD 1995.
  • 23. P. Dayakar, K. V. Raman, K. V. B. Raju, Study on permeation grouting using cement grout in sandy soil. IOSR Journal of Mechanical and Civil Engineering, 4, 4, 5-10 (2012).
  • 24. G. Modoni, J. Bzowka, Analysis of foundations reinforced with jet grouting. Journal of Geotechnical and Geoenvironmental Engineering, 138, 12, 1442–1454 (2012).
  • 25. B. Ozsoy, T. Durgunoglu, The mitigation of liquefaction by means of high modulus soilcrete columns. Fifth National Conference on Earthquake Engineering, Istanbul, Turkey, 26-30 May 2003.
  • 26. M. H. Maher, K. S. Ro, J. P. Welsh, Cyclic undrained behaviour and liquefaction potential of sand treated with chemical grouts and microfine cement (MC-500). Geotechnical Testing Journal, 17, 2, 159-170 (1994).
  • 27. FEMA, NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Pub. No: 273, Washington D.C. 1997.
  • 28. CEN, Eurocode 8: Design of structures for earthquake resistance. Ref. No. prEN 1998-1:2003 E, Brussels 2003.
  • 29. M. Heidarzadeh, A. A. Mirghasemi, F. Eslamian, S. M. Sadr-Lahijani, Application of cement grouting for stabilization of coarse materials. International Journal of Civil Engineering, Transaction B: Geotechnical Engineering, 11, 1, 71-77 (2013).
  • 30. KOERI, Earthquake Maps, 2012, http://www.koeri.boun.edu.tr/
  • 31. K. Kanai, T. Tanaka, On microtremors. Bulletin of the Earthquake Research Institute, 39, 97-114, University of Tokyo 1961.
  • 32. Y. Nakamura, Clear identification of fundamental idea of Nakamura’s technique and its applications. 12th World Conf. Earthq. Eng., Auckland, New Zeland, 30 January- 4 February 2000.
  • 33. I. Towhata, Geotechnical Earthquake Engineering. Springer, Berlin 2008.
  • 34. Y. Luo, J. Xia, J. Liu, Y. Xu, Q. Liu, Research on the middle-of-receiverspread assumption of the MASW method. Soil Dynamics and Earthquake Engineering, 29, 1, 71–79 (2009).
  • 35. S. Midorikawa, Prediction of isoseismal map in the Kanto plain due to hypothetical earthquake. Journal of Structural Engineering, 33B, 43-48 (1987).
  • 36. R. Borcherdt, C. M. Wentworth, A. Janssen, T. Fumal, J. Gibbs, Methodology for predictive GIS mapping of special study zones for strong ground shaking in the San Francisco Bay region, CA. 4th Int. Conf. Seismic Zonation, Stanford, USA, 26-39 August, 1991.
  • 37. W. B. Joyner, T. E. Fumal, Use of measured shear-wave velocity for predicting geologic site effects on strong ground motion. 8th World Conf. on Earthquake Eng., San Francisco, USA, 18-22 May, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39f1ae45-9e6f-43f5-978e-369373c46949
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.