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INTRODUCTION

A semi-autogenous grinding (SAG) machine 
is a cylindrical machine used mostly in mineral 
processing plant for ore size reduction and it is 
one of the most energy intensive and important 
operation machine in the mineral processing in-
dustry [1]. The SAG mill reduces the large size 
ore to the required particle size by a tumbling 
action caused by the rotation of the mill. The 
tumbling of the ore in the mill encourages the 
rock-on-rock and rock-on-steel ball grinding. The 
operation of the SAG mill is governed around 
the ore feed, mill process water, crushed pebble 
feed and mill rotation speed as input parameters 
that are important to the SAG mill operation and 
grinding efficiency [2]. This input parameters are 
controlled in order to control the weight of the 
SAG mill, the power draw and other SAG mill 

throughput contributing factors. The SAG mill 
grinding process is a closed-circuit process that 
is increasingly complex to control effectively and 
efficiently [3]. The complexity around the SAG 
mill is due to unmeasured disturbance factors, 
process delays and the coupling and interaction 
between process variables. 

Different types of SAG mill control methods 
have been investigated and implemented over the 
past years [4]. Some of these control strategies 
include advanced process control (APC), expert 
control, PID control, and operations manager con-
trol. Mineral processing plant mostly have distrib-
uted control system (DCS) implemented as pri-
mary level control, but these control approaches 
are not able to run the SAG Mill as designed [5]. 
A simple proportional-integral-derivative (PID) 
controller cannot be utilized as a control strategy 
for the entire process of the SAG mill in order to 
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yield maximized throughput. This is because the 
input variables interact in a way that is not really 
clear as to how they affect the mill throughput. 
The SAG mill control can be optimized to achieve 
a favorable throughput by implementing a dif-
ferent control strategy. Advance process control 
methods are seen as the type of approach that can 
be used to successfully control SAG mill circuits. 
The application of model-based predictive control 
(MPC) has been advocated by Yutronic et al. [6], 
as control for mineral recovery process because 
MPC are very simple to tune, intuitive and have 
predictive characteristics that account for distur-
bances and dead times. The control strategy pro-
posed by Bouchard et al. [7], was that of using a 
selector-based strategy between the load PID con-
troller and the power PID controller and switches 
between controller if certain load or power con-
straints are violated. M. Ruel [8], utilizes Fuzzy 
logic control as another form of APC that is very 
ideal in situations when an experienced operator 
has better control of a process than a PID control-
ler to control the SAG mill circuit. Expect con-
trol system (Fuzzy control) that aim to maximize 
throughput have no clear procedures to tune them 
and exhibit poor response to disturbances unlike 
MPC that allows for handling of operational con-
straints, coupling of process variables and are easy 
to tune [9]. Model-predictive control is an impor-
tant and frequently used advance control technique 
for complex multivariable control problems [10]. 
MPC and other model-based controller provide a 
significant advantage over PID when applied to 
grinding circuit [11].

In order to establish a model-based controller, 
an accurate or approximate model of the process 
needs to be obtained first. A model can be obtained 
either from mathematical modelling or obtained 
from historical data of the process that can be used 
to identify the behavior of the system. The model 
is used as the basis for the design of an MPC con-
troller and it is the vital part of the predictive con-
trol implementation. In [12], the process model is 
obtained by the controller that models the system 
response using generic function series approxima-
tion based on Laguerre polynomials providing a 
simple mathematical model. Haijie et al. [13], Use 
a dynamic mathematical model of the SAG mill 
circuit obtained by interlinking sub process mod-
ules within the circuit. The mathematical model 
obtained are complex and mostly applicable only 
to that mineral processing plant. Bauer et al. [14], 
applied an industrial derived mathematical model 

by Le Roux et al. [15] to explain the concept of 
advance process control via simulation. A lot of 
process nowadays are equipped with capabilities 
of automatic data acquisition stored on historian 
data servers that collect a large amount of informa-
tion about a certain process operation [16]. Agar-
wal et al. [17], applied sophisticated statistical and 
neural network techniques to the SAG mill data in 
order to identify the data streams that are impor-
tant to the process and obtain a SAG mill power 
consumption model using. Other literatures, such 
as Yutronic et al. [6], have also utilized historical 
data to obtain process model. Therefore, sample 
data collected can be used to study and identify a 
process model using sophisticated software such 
a MATLAB system identification toolbox, neural 
network app as well statistical software to analyze 
the relationship between the required variable for a 
process or system.

Problem statement 

The control strategy currently employed for 
SAG. Mill primarily involves basic PID control 
complemented by manual interventions from op-
erators. This approach, however, has been found 
to be insufficient in efficiently managing the SAG 
mill’s operations. One of the main issues with 
this control strategy is its slow responsiveness to 
measured disturbances like pebble recycle, mill 
rotation speed etc, and unmeasured disturbances 
that regularly occur in the mill’s operational en-
vironment. Due to this lag in response, the SAG 
mill often experiences suboptimal performance 
in key operational areas. Specifically, there are 
noticeable inefficiencies in terms of the mill’s 
throughput: the rate at which the ore is pro-
cessed and, power consumption. The slow reac-
tion of the control system means that it struggles 
to quickly adapt to changes or fluctuations in 
the milling process, which could be caused by 
variations in ore quality, size, hardness, or other 
external factors. This inability to swiftly adjust 
to such disturbances often leads to a reduced rate 
of processing the ore, resulting in lower through-
put. Furthermore, the inefficient control strategy 
contributes to higher energy consumption. The 
delay in response to changing conditions means 
that the mill may operate under less-than-ideal 
conditions for extended periods, thereby using 
more power than necessary. This not only in-
creases operational costs but also can lead to ad-
ditional wear and tear on the mill’s components, 
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potentially shortening its lifespan and increasing 
maintenance requirements. In summary, the cur-
rent basic PID and operator control strategy for 
the SAG mill is hampered by its slow response 
to disturbances in the milling process, leading to 
decreased efficiency in throughput and increased 
power consumption, which in turn impacts the 
overall productivity and cost-effectiveness of 
the mill’s operations.

Aim and objective

The focus of this study is on implementing 
and evaluating a MPC system for the grinding 
circuit of a SAG mill. The research aims to as-
sess the effectiveness of MPC in comparison 
with the current PID. Control method, specifi-
cally looking at aspects such as throughput, 
power usage, and torque stability. The key 
goals of this research include:
 • Gathering and analyzing data related to the in-

put and output variables of the SAG mill.
 • Developing a process model using MATLAB’s 

neural network capabilities, based on the col-
lected process data.

 • Designing and deploying an MPC controller 
designed to enhance the throughput efficiency 
of the SAG mill.

 • Conducting a comparative analysis between the 
performance of the newly implemented MPC 
controller and the existing manual process con-
trol by operators.

METHODOLOGY

MPC control strategy

Figure 1 illustrates the outlined MPC strat-
egy for the SAG mill. In this control scheme, 
the MPC controller is responsible for managing 
four key output variables: mill mass (WIT-004), 
mill power draw (JT-001), mill recycle load 
(WIT-003) and also mill torque (NIT-001). To ef-
fectively control these outputs, the MPC system 
adjusts four manipulated variables: WIT-001, the 
setpoint of FIC-001, the setpoint of SC-001, and 
WIT-002. This approach demonstrates the com-
prehensive and interactive nature of the proposed 
MPC strategy in optimizing the SAG mill’s oper-
ations. The Figure 1 shows the discharge hopper 
where the fine materials are recovered and pump 
to other section of the plant. The pebble cone 
crusher where pebbles from the SAG mill are fur-
ther reduced in size and return to the SAG mill 
via the CV-002 conveyor. This study followed a 
structured methodology, beginning with the col-
lection and analysis of historical process data. Af-
ter a thorough examination of the sampled data, 
it was imported into MATLAB for additional 
processing. In MATLAB, this data was utilized to 
develop a process model for the SAG mill, lever-
aging the neural network toolbox. This newly cre-
ated model was then subject to validation through 
testing with both the training dataset and various 
random sets of process input and output data.

Figure 1. Proposed SAG mill MPC control strategy
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Modelling the SAG mill

Figure 3 presents the neural network’s architec-
ture, demonstrating the training process involving 
four input variables-feed rate, water ratio, pebble 
recycle, and SAG speed-with their corresponding 
outputs: mass, power, recycle load, and torque. This 
training process utilizes a nonlinear input-output 
method. Additionally, the algorithms employed for 
the training and performance evaluation, which fo-
cus on minimizing the mean squared error (MSE), 
are detailed in Figure 4.

Model validation

The SAG mill predictive neural network 
model is discussed here. Figure 5–6 illustrates the 
finalized predictive neural network model for the 
SAG mill process, which was rigorously tested 
using a set of random data.

In this model, the input variable (x) is linked to 
the four designated process inputs, as indicated in the 

Following the successful validation of the 
SAG mill process model, the next step involved 
the design of a MPC controller based on this 
model. The MPC controller was subsequently im-
plemented, and its performance and results were 
meticulously recorded and analyzed. This process 
allowed for a comprehensive evaluation of the ef-
fectiveness of the MPC controller in managing 
the SAG mill operations.

Data collection and analysis

A dataset encompassing 21.8 days of opera-
tional data from the SAG mill was acquired and 
subsequently imported into MATLAB for analy-
sis. This dataset was compiled from various op-
erational periods to ensure a comprehensive rep-
resentation of the SAG mill’s performance under 
diverse conditions. An illustrative sample of the 
process output data, as captured in this dataset, is 
presented in Figure 2.

Figure 2. DATA05, process output data sample

Figure 3. Structure of neural network training



261

Advances in Science and Technology Research Journal 2024, 18(3), 257–269

diagram. The output from the model is then fed into a 
demultiplexer block, which separates the combined 
output signal into four distinct output signals. These 
discrete output signals are intricately monitored and 
presented on a Simulink dashboard, where they are 
subjected to a thorough comparative analysis and 
artfully superimposed with the real-time process 
output data. Figure 7 represent the model testing and 
validation performance which is tested using set of 
random data and showing the good results. 

It showcases a side-by-side evaluation of the 
predictive neural network model’s outputs against 
the real SAG mill process data. In the upper left por-
tion of Figure 7, the mill mass output from the neu-
ral predictive model (represented in orange as De-
mux1) is aligned with the real mill mass output (in 
blue, labeled as data mass), demonstrating a signifi-
cant match between the model’s predictions and the 
actual outputs. Shifting to the upper right graph 
in Figure 7, the neural predictive model’s per-
formance for power draw (Demux2, in orange) 
is displayed next to the actual power draw data 
(data power, in blue). The predicted power out-
put from the model closely resembles the actual 
power draw of the process.

In the lower left graph of Figure 7, the output 
for the recycle load from the model (Demux3, in 

orange) is set against the actual process recycle 
load (data recycle, in blue). This comparison in-
dicates a strong correlation between the neural 
model’s predictions and the actual recycle load 
data. The lower right graph depicted in Figure 
7 showcases the effectiveness of the SAG mill 
torque predictive model. In this representation, 
the model’s torque predictions (Demux4, depict-
ed in orange) closely align with the actual process 
torque output (data torque, shown in blue), provid-
ing compelling evidence of the model’s predictive 
precision in this specific aspect.

MPC controller design

The development of a MPC controller fol-
lows the creation of a process model. This MPC 
controller is tailored to regulate the model out-
puts, ensuring they align with predetermined set-
points. The control strategy encompasses the me-
ticulous adjustment of four variables: feed rate, 
water ratio, pebble recycle, and SAG mill speed. 
These adjustments are meticulously orchestrated 
to ensure that the outputs of the predictive model 
precisely align with their designated target ref-
erences. Key considerations in the design of the 
MPC controller include the maintenance of the 

Figure 4. Training algorithm progress Figure 5. Model testing and validation performance 

Figure 6. Model of the SAG mill process
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FeedRate to the SAG mill at its maximum or an 
elevated level, aimed at augmenting and optimiz-
ing throughput (Figure 8). Additionally, the pre-
cise control of the SAG mill’s mass (weight) is of 
paramount importance to achieve optimal grind-
ing efficiency and maximize mill production.

Defining accurate input and output constraints 
is vital for effective control. The arrangement in 
Figure 8 demonstrates this, showcasing the inte-
gration of the MPC controller block with the SAG 
mill model block within the Simulink environ-
ment. Moreover, it presents the configuration of 
the MPC control system as seen in the MATLAB 

MPC designer tool. This Figure underscores the 
four manipulated variables and the four mea-
sured outputs (MO) of the controller, all of 
which are based on the neural network trained 
model of the SAG mill.

Defining the limitations on process 
measurement outputs 

Table 1 outlines the specific output constraints 
for the SAG mill when it is operating at full capac-
ity. These constraints delineate the upper and lower 
limits beyond which the SAG mill may encounter 

Figure 8. MPC controller design

Figure 7. Testing and validation of the model using DATA05
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trip conditions. The role of the MPC controller is 
to consistently maintain the outputs within these 
defined operational limits to ensure smooth and 
uninterrupted functioning of the SAG mill.

Table 2 presents the specific ranges and incre-
mental adjustments for the control variables used 
by the MPC controller. These parameters are care-
fully set to prevent scenarios such as overfeeding 
or underfeeding the SAG mill, supplying exces-
sive or insufficient water, and operating the mill 
at inappropriately high or low speeds. The table 
serves as a guideline to ensure that the controller 
optimally manipulates these variables, maintain-
ing the balance and efficiency of the SAG mill’s 
operation. Figure 9 provides a visual representa-
tion of the predefined nominal values for both the 
inputs and outputs within the MPC controller. 
These values play a pivotal role as fundamental 
reference points during the intricate design and 
fine-tuning phases of the controller. They serve 
as a benchmark, guiding the determination of the 
optimal control settings required for the system. 

Figure 10 illustrates the weights assigned to 
the manipulated variables (MV) and measured 
outputs (MO) within the control system. These 
weights signify the relative importance of each 
input and output in the control process, guid-
ing the controller in prioritizing its adjustments 
and responses.

Testing, tune and simulation of the MPC
controller

Following a series of tuning trials, the final 
tuning parameters selected are displayed in Fig-
ure 11. These parameters include setting the MPC 
controller’s sample time to 2 seconds, configuring 
the controller’s state estimation to a higher level, 
and adjusting the controller’s performance to be 
more robust, albeit slightly less aggressive.

Simulation using reference (580 t, 11000 kW, 
55 t/h, -90%). Observations indicate that the set-
tling time for the controller’s output response 
has been extended, resulting in a control process 
that is less erratic and more stable initially before 
reaching stabilization. It appears that only the 
mill mass consistently settles and stabilizes at the 
reference point. This behavior is likely attributed 
to the specific weight assigned to the mill mass in 
the controller’s settings. As a result, the controller 
prioritizes stabilizing the mill mass at its setpoint 
before addressing the other outputs.

Table 1: Process measure output constraints
Channel Type (output) Min Max

Mill mass (ton) MO 400 600

Power draw (kW) MO 11000 12800

Recycle load (t/h) MO 10 250

SAG torque MO -97 -90

Table 2. MV constraints and rate of change
Channel Type (MV) Min Max Rate min Rate max

Feed rate (t/h) MV 800 1800 -10 10

Water ratio (-) MV 0.3 0.5 -0.001 0.001

Pebble recycle (t/h) MV 0 250 -10 10

SAG speed (%) MV -99 -80 -0.05 0.05

Figure 9. Nominal process I/O values
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Figure 12 illustrates the process through which 
the MPC controller adjusts variables like feed rate, 
water ratio, pebble recycle load, and SAG mill speed 
to achieve the output responses depicted in Figure 
13. To meet the desired output reference, the con-
troller increases the feed rate, eventually stabilizing 
it around 1650 tons/hour. Concurrently, there is a 
gradual reduction in the water ratio, which settles 
at approximately 0.3. The SAG mill speed is also 

methodically decreased, eventually stabilizing at 
around 98% (-98). Additionally, the controller 
maximizes the pebble recycle rate.

The simulated results of the MPC’s manipu-
lated variables, such as those shown in Figure 13, 
provide valuable insights for comparing the effi-
ciency of operator control with that of the newly 
designed MPC. This comparison will be crucial 
in determining which control method not only 

Figure 10. Inputs and outputs weights

Figure 11. Tuning parameter Hp = 15, Hc = 2 and T = 2s

Figure 12. MPC manipulate variable simulation results
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Figure 13. MPC output response, reference [580t, 11000kW, 100t/h, -90%]

offers more effective control but also optimizes 
SAG mill throughput while conserving energy 
and water resources.

Implementation of the MPC controller

In this section of the study, we will establish a 
connection between the measured outputs gener-
ated by the MPC controller and the actual process 
outputs using the MATLAB OPC DA application. 
This connection will establish communication 
with the process plant’s PLC through the RSLinx 
Remote server. By contrasting real-time process 
outputs with the reference setpoints established 
within the MPC controller, we will have the op-
portunity to observe and analyze how the MPC 
controller adapts the manipulated variables when 
compared to the operator and PID control meth-
ods. The data gathered from this implementation 
will subsequently undergo a comprehensive evalu-
ation to ascertain whether the MPC controller out-
performs operator and PID control in terms of op-
timizing mill throughput and minimizing energy 
consumption. The above Figure 14 illustrates the 
practical application of the specially crafted MPC 
controller, making use of real-time data from the 
SAG mill for the purposes of this research project. 
During this implementation phase, the designed 
controller will be exclusively employed.

RESULTS

Following a 20-minute real-time simulation 
conducted with specific output references, as il-
lustrated in Figure 15, we closely observed how 
the actual SAG mill process outputs were manu-
ally adjusted to align with these predefined refer-
ences. Additionally, Figure 16 visually illustrates 
the contrasting approaches of MPC control and 
operator control in managing actual process input 
variables. To provide a comprehensive assess-
ment and presentation of the responses and be-
haviours exhibited by both MPC control and op-
erator control, as depicted in Figure 15 and Figure 
16, we will systematically conduct a comparison 
and summarize the findings in Table 3.

Table 3 provides a comparative analysis of 
the responses exhibited by the operator and MPC 
controls in various scenarios concerning the SAG 
mill process outputs: At t = 100 seconds, the 
observed conditions involve mass, power, and 
torque being below their reference values, while 
the recycle load exceeds its reference point: op-
erator control predominantly maintains the status 
quo regarding process input variables, with only 
a reduction in pebble feed noted. There are mini-
mal alterations in the operator’s control actions 
over the 20-minute simulation period. In contrast, 
under MPC control, noticeable adjustments are 
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Figure 15. MPC MV vs realtime SAG mill inputs, ref [570 t, 11200 kW, 100 t/h, -95%]

Figure 14. Real time data for the SAG mill with MPC controller

made: an increase in feedrate and pebble recycle 
feed, an elevation in SAG mill speed, and a reduc-
tion in water ratio. These actions are undertaken 
with the objective of aligning the SAG mill out-
puts precisely with their predefined setpoints. At 

the time mark of 500 seconds, where mill mass, 
power, and torque are still below their respective 
reference values and recycle load exceeds the ref-
erence: operator control inputs predominantly re-
main unaltered, with the exception of an increase 

Table 3. Comparison between operator and MPC control, Ref = [570 t, 11200 kW, 100 t/h, -95%]
Time 
(s) Sag mill process outputs Operator control MPC control

Mass Power Recycle 
load Torque Feed WRatio Pebble Speed Feed WRatio Pebble Speed

100 Below ref Below 
ref

Above 
ref Below ref No 

Change
No 

change Reduced No 
change Increased Reduce Increase Increase

500 Belowref Below 
ref

Above 
ref Below ref No 

change
No 

change Increased No 
change Increase Reduce Increase Increase
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Figure 16. Real-time process outputs vs outputs reference [560t,11000kW,100t/h, -94%]

in pebble feed during this time frame. Converse-
ly, the MPC controller adheres to its strategy initi-
ated at the 100-second mark, with a primary focus 
on maximizing the mill speed to 99%, elevating 
the feed rate to 1750 tons/hour, reducing the wa-
ter ratio to 0.3, and elevating the pebble feed to its 
maximum rate of 250 tons/hour. It is noteworthy 
that the control of pebble recycle is overseen by a 
bin-level system, where the activation or deacti-
vation of the pebble crusher feeder is contingent 
upon the bin level. The real-time simulation was 
executed with the process setpoints set at [560 
tons, 11000 kW, 100 t/h, -94%]. Table 4 offers an 
exhaustive comparison of the responses exhibited 
by both operator and MPC controls in relation to 
the SAG mill process outputs, as illustrated in 
Figure 17. These comparisons are conducted un-
der the following circumstances: At the time mark 
of 200 seconds, where mass and torque are below 
their designated reference values, and torque and 
recycle load exceed their predefined levels: In 
this phase of the real-time simulation, operator 
control maintains the status quo regarding pro-
cess input variables, indicating a lack of active 
response to the changing conditions. Conversely, 
if the MPC controller were overseeing the pro-
cess, it would take proactive measures by increas-
ing the feedrate, reducing the water-to-ore ratio, 
maintaining the pebble feed at a constant level, 

and decreasing the SAG mill speed to align the 
mill outputs with their predetermined setpoints. 
At the time mark of 500 seconds, where mill 
mass, power, torque, and recycle load are all ob-
served to be below their respective reference val-
ues: no significant alterations in operator control 
inputs are observed since the 200-second mark. 
Meanwhile, the MPC controller, recognizing that 
the SAG mill outputs are still not approaching the 
reference points, continues to adapt by reducing 
the speed, increasing the feed rate, and raising the 
water ratio, while keeping the pebble feed con-
stant. At the time mark of 550 seconds, where the 
recycle load slightly exceeds its reference, while 
other outputs remain below their defined refer-
ences: during this phase, the operator is observed 
to decrease the SAG mill speed by 1% without 
making changes to other input conditions. In con-
trast, the MPC controller continues to escalate the 
feedrate and the water-to-ore ratio. No adjustment 
is made to the pebble feed (which remains at 0), 
but a noticeable change in the SAG mill speed is 
evident as the controller starts to increase it.

The results and analysis of the simulation 
reveal notable differences in response times be-
tween operator control and MPC control of the 
SAG mill. It’s observed that the operator often 
takes an extended period to react to changes in 
SAG mill outputs like mill mass, power draw, 
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Figure 17. MPC MV vs realtime SAG mill process inputs, reference [560 t,11000 kW,100 t/h, -94%]

recycle load, or torque. In some cases, the op-
erator does not respond until the system reaches 
a critical condition. Additionally, the operator 
typically adjusts only one process input variable 
at a time, waiting to observe the impact of this 
change on the SAG mill before modifying any 
other variables. In contrast, the MPC controller 
exhibits a more proactive approach. It responds 
promptly to changes in SAG mill process outputs, 
striving to maintain the controlled outputs at their 
required or defined reference setpoints. The MPC 
controller also actively adjusts all control vari-
ables as needed to stabilize the SAG mill-con-
trolled outputs. This operational effectiveness 
of the MPC controller aligns with the operat-
ing scenarios outlined by Brian Putland et al. 
[17]. The actions and control mechanisms of 
the MPC controller, as demonstrated in Figure 

17, show its capability to manage the SAG mill 
operations more efficiently and responsively 
compared to traditional operator control.

CONCLUSIONS

This study has achieved the successful devel-
opment of a MPC utilizing a neural network mod-
el derived from historical process data of a SAG 
mill, leveraging MATLAB’s neural network tool-
box. The model’s precision was validated against 
both the training data and additional process data. 
Subsequently, the implemented MPC controller 
underwent real-time testing, pitted against opera-
tor control, which relies on PID setpoints.

The MPC controller has demonstrated its 
prowess in simultaneously and judiciously 

Table 4. Comparison between operator and MPC control, Ref = [560t, 11000kW, 100t/h, -94%]
Time 
(s) Sag mill process outputs Operator control MPC control

Mass Power Recycle 
load Torque Feed WRatio Pebble Speed Feed WRatio Pebble Speed

200 Below ref Above 
ref

Above 
ref Below ref No 

change
No 

change
No 

change
No 

change Increased Reduced No 
change Reducing

500 Below ref Below 
ref Below ref Below ref No 

change
No 

change
No 

change
No 

change Increased Increased No 
change Reducing

550 Below ref Below 
ref

Above 
ref Below ref No 

change
No 

change
No 

change Reduced Increased Increased No 
change Increasing
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adjusting all control variables, a notable de-
parture from operator control, which tends to 
prioritize one control variable at a time. For 
instance, operators often resort to diminishing 
the ore feed-rate to reduce mill mass or lower-
ing the SAG mill speed to increase mill mass. 
Such strategies, however, tend to have adverse 
effects on the SAG mill’s throughput rate due to 
reduced feed-rate or compromised mill speed. 
In contrast, the MPC controller has efficiently 
overseen the SAG mill by operating it at ele-
vated speeds while concurrently fine-tuning the 
water-to-ore ratio and augmenting the pebble re-
cycle crushing rate, all the while maintaining a 
robust ore feed-rate. This underscores the MPC 
controller’s capacity to uphold high throughput 
rates through strategic manipulation of variables 
like water-to-ore ratio, SAG mill speed, and 
pebble crushing recycle rate, instead of relying 
solely on feed-rate adjustments. Moreover, the 
MPC controller has exhibited adept control over 
water usage in the SAG mill, contributing to wa-
ter conservation and cost reduction. It has also 
effectively governed the SAG mill’s speed, re-
sulting in energy savings and diminished energy 
consumption costs. These findings underscore 
the MPC’s comprehensive effectiveness in opti-
mizing operational efficiency while concurrently 
minimizing resource consumption.
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