PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coal-derived liquid smoke as an eco-friendly coagulant for enhancing the quality of natural latex in Jambi, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The productivity and quality of natural rubber in Indonesia, particularly in Jambi Province, remain suboptimal, resulting in lower market value compared to rubber from Malaysia and Thailand. This study investigates the potential of coal-derived liquid smoke as an alternative coagulant to improve the quality of natural latex. Liquid smoke was produced using a 3-in-1 pyrolysis reactor operated at 250–300 °C for 5 hours and subsequently purified into three grades. Various concentrations (10%, 25%, 45%, 50%, and 60%) of liquid smoke were tested for latex coagulation. Characterization revealed that purified liquid smoke had a pH range of 2.06–2.66, total phenolic content of 11.67–13.13 mg GAE/100 g, and acidity of 11.12–13.06%. Field applications with local farmers in Ladang Panjang Village demonstrated that liquid smoke at concentrations above 40% significantly improved latex quality, with faster coagulation times, reduced impurities, and enhanced resistance to microbial growth. These findings suggest that coal-derived liquid smoke is a cost-effective, environmentally friendly alternative to conventional coagulants, contributing to improved rubber quality and market value.
Twórcy
  • Program Study of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, Indonesia
  • Program Study of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, Indonesia
autor
  • Program Study of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, Indonesia
  • Department of Mining Engineering, Institut Teknologi Sumatera, Lampung, Indonesia
Bibliografia
  • 1. Achmad, E., R., M. R., Zamzami, Z., & Delis, A. (2020). Downstream development strategy of processing industry in Jambi Province. Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah, 8(5), 497–508. https://doi.org/10.22437/ppd.v8i5.10491
  • 2. Adiningsih, Y., Fauziati, Priatni, A., & Haspiadi. (2021). Characterization of Rubber Shell Liquid Smoke at Various Pyrolysis Temperatures and the Application to Latex Coagulant: Joint Symposium on Tropical Studies (JSTS-19), Kalimantan Timur, Indonesia. https://doi.org/10.2991/absr.k.210408.070
  • 3. Afrah, B. D., Riady, M. I., Payomthip, P., Ramadhanty, R. V., Rizki, F., & Alfayyadh, M. L. (2024). Analysis of Liquid Smoke Grade Characteristics from Coconut Shells and Palm Kernel Shell Waste Through a Slow Pyrolysis Process. Journal of Engineering and Technological Sciences, 56(04), 545–558. https://doi.org/10.5614/j.eng.technol. sci.2024.56.4.10
  • 4. Basafa, M., & Hawboldt, K. (2023). A review on sources and extraction of phenolic compounds as precursors for bio-based phenolic resins. Biomass Conversion and Biorefinery, 13(6), 4463–4475. https://doi.org/10.1007/s13399-021-01408-x
  • 5. Brustolin, A. P., Soares, J. M., Muraro, K., Schwert, R., Steffens, C., Cansian, R. L., & Valduga, E. (2024). Investigating antimicrobial and antioxidant activity of liquid smoke and physical‐chemical stability of bacon subjected to liquid smoke and conventional smoking. Journal of Food Science, 89(11), 7217– 7227. https://doi.org/10.1111/1750-3841.17379
  • 6. Desvita, H., Faisal, M., Mahidin, M., & Suhendrayatna, S. (2021). Preliminary study on the antibacterial activity of liquid smoke from cacao pod shells (Theobroma cacao L). IOP Conference Series: Materials Science and Engineering, 1098(2), 022004. https://doi.org/10.1088/1757-899X/1098/2/022004
  • 7. Evahelda, Astuti, R. F., Aini, S. N., & Nurhadini. (2021). Liquid smoke application in latex as an environment-friendly natural coagulant. IOP Conference Series: Earth and Environmental Science, 926(1), 012052. https://doi.org/10.1088/1755-1315/926/1/012052
  • 8. Gea, S., Azizah, N., Piliang, A. F., & Siregar, H. (2018). The Study of Liquid Smoke as Substitutions in Coagulating Latex to The Quality of Crumb Rubber. Journal of Physics: Conference Series, 1120, 012051. https://doi.org/10.1088/1742-6596/1120/1/012051
  • 9. Hertianti, E., Suwinarti, W., & Supraptono, B. (2023). The effect of liquid smoke treatment from plant leaves materials for latex. IOP Conference Series: Earth and Environmental Science, 1282(1), 012035. https://doi.org/10.1088/1755-1315/1282/1/012035
  • 10. Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273–292. https://doi.org/10.1016/j. fm.2004.08.006
  • 11. Kailaku, S., Syakir, M., Mulyawanti, I., & Syah, A. (2017). Antimicrobial activity of coconut shell liquid smoke. IOP Conference Series: Materials Science and Engineering, 206, 012050. https://doi.org/10.1088/1757-899X/206/1/012050
  • 12. Keeley, J., Jarvis, P., & Judd, S. J. (2014). Coagulant Recovery from Water Treatment Residuals: A Review of Applicable Technologies. Critical Reviews in Environmental Science and Technology, 44(24), 2675–2719. https://doi.org/10.1080/10643389.201 3.829766
  • 13. Kim, S. P., Lee, S. J., Nam, S. H., & Friedman, M. (2018). Mechanism of Antibacterial Activities of a Rice Hull Smoke Extract (RHSE) Against Multidrug‐Resistant Salmonella Typhimurium In Vitro and in Mice. Journal of Food Science, 83(2), 440–445. https://doi.org/10.1111/1750-3841.14020
  • 14. Li, D., Zhang, Y., Dong, H., Du, Q., Gao, J., & Cui, Z. (2020). Effects of iron on the soot formation during coal pyrolysis. Fuel, 270, 117463. https://doi.org/10.1016/j.fuel.2020.117463
  • 15. Lilis Rosmainar, Karelius, Rasidah, I Nyoman Sudyana, Nyahu Rumbang, & Idam Sulastri. (2020). THE USE OF LIQUID SMOKE AS LATEX COAGULANT FOR RUBBER FARMER GROUP IN BUKIT LITI VILLAGE, CENTRAL KALIMANTAN. BALANGA: Jurnal Pendidikan Teknologi Dan Kejuruan, 8(2), 49–54. https://doi.org/10.37304/balanga.v8i2.2002
  • 16. Lingbeck, J. M., Cordero, P., O’Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97(2), 197–206. https://doi.org/10.1016/j. meatsci.2014.02.003
  • 17. Milly, P. J., Toledo, R. T., & Ramakrishnan, S. (2005). Determination of Minimum Inhibitory Concentrations of Liquid Smoke Fractions. Journal of Food Science, 70(1), M12–M17. https://doi.org/10.1111/j.1365-2621.2005.tb09040.x
  • 18. Nugroho, A., Majid, I. M., & Al Hakim, H. M. (2019). Performance comparison of liquid smokes from galam wood, rubber wood, and oil palm frond as latex coagulants on the quality aspects of the rubber cup lump. Jurnal Riset Industri Hasil Hutan, 11(1), 23. https://doi.org/10.24111/jrihh.v11i1.4619
  • 19. Pilevar, Z., Hosseini, H., Hajimehdipoor, H., Shahraz, F., Alizadeh, L., Mousavi Khaneghah, A., & Mahmoudzadeh, M. (2017). The Anti-Staphylococcus aureus Effect of Combined Echinophora platyloba Essential Oil and Liquid Smoke in Beef. Food Technology and Biotechnology, 55(1). https://doi.org/10.17113/ftb.55.01.17.4633
  • 20. Santiyo Wibowo, Syafii, W., Gustan Pari, & Elis Nina Herliyana. (2023). Utilization of Lignocellulosic Waste as a Source of Liquid Smoke: A Literature Review, Lampung, Indonesia. JURNAL KESEHATAN LINGKUNGAN, 15(3), 196–216. https://doi.org/10.20473/jkl.v15i3.2023.196-216
  • 21. Sinaga, M. M., Marseno, D. W., & Manikharda, M. (2023). Application of Liquid Smoke from Rubber Wood Clone PB-340 as Latex Coagulant and Preservation of Natural Rubber Coagulum. agriTECH, 43(1), 85. https://doi.org/10.22146/agritech.70487
  • 22. Soares, J. M., Da Silva, P. F., Puton, B. M. S., Brustolin, A. P., Cansian, R. L., Dallago, R. M., & Valduga, E. (2016). Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon. Innovative Food Science & Emerging Technologies, 38, 189–197. https://doi.org/10.1016/j. ifset.2016.10.007
  • 23. Surboyo, M. D. C., Baroutian, S., Puspitasari, W., Zubaidah, U., Cecilia, P. H., Mansur, D., Iskandar, B., Ayuningtyas, N. F., Mahdani, F. Y., & Ernawati, D. S. (2024). Health benefits of liquid smoke from various biomass sources: A systematic review. BIO Integration, 5(1). https://doi.org/10.15212/ bioi-2024-0083
  • 24. Tian, B., Gao, J., Guo, Q., Zhu, X., Zhang, H., Zhu, W., Hao, X., Yang, C., Yang, Y., & Li, Y.-W. (2022). Process study and CO2 emission reduction analysis of coal liquefaction residue fluidized bed pyrolysis. Frontiers in Energy Research, 10, 965047. https://doi.org/10.3389/fenrg.2022.965047
  • 25. Triawan, D. A., Nasution, A. V., Sutanto, T. D., Nesbah, N., Widiyati, E., Adfa, M., Banon, C., & Nurwidiyani, R. (2022). Preparation and Characterization of Liquid Smoke from Wood Sawdust Azadirachta excelsa (Jack) M. Jacobs and its Application as a Natural Rubber Coagulant. IOP Conference Series: Earth and Environmental Science, 1108(1), 012052. https://doi.org/10.1088/1755-1315/1108/1/012052
  • 26. Vachlepi, A. (2020). Optimalisasi Lateks Tetesan Lanjut Menggunakan Berbagai Koagulan Anjuran. Widyariset, 6(1), 1. https://doi.org/10.14203/ widyariset.6.1.2020.1-21
  • 27. Vachlepi, A., & Suwardin, D. (2015). Characterization of Iron Metal Corrosion in Liquid Smoke Coagulant. Procedia Chemistry, 16, 420–426. https://doi.org/10.1016/j.proche.2015.12.073
  • 28. Varma, A. K., Shankar, R., & Mondal, P. (2018). A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In P. K. Sarangi, S. Nanda, & P. Mohanty (Eds.), Recent Advancements in Biofuels and Bioenergy Utilization (pp. 227–259). Springer Singapore. https://doi.org/10.1007/978-981-13-1307-3_10
  • 29. Wibowo, S., Pari, G., & Pangersa Gusti, R. E. (2016). PEMANFAATAN ASAP CAIR KAYU PINUS (Pinus merkusii Jungh. & de Vriese) SEBAGAI KOAGULAN GETAH KARET. Jurnal Penelitian Hasil Hutan, 34(3), 199–205. https://doi.org/10.20886/jphh.2016.34.3.199-205
  • 30. Winarni, I., Gusmailina, & Komarayati, S. (2021). A review: The utilization and its benefits of liquid smoke from lignocellulosic waste. IOP Conference Series: Earth and Environmental Science, 914(1), 012068. https://doi.org/10.1088/1755-1315/914/1/012068
  • 31. Xin, X., Dell, K., Udugama, I. A., Young, B. R., & Baroutian, S. (2021). Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, 294, 125368. https://doi.org/10.1016/j.jclepro.2020.125368
  • 32. Yao, Z., Kang, K., Cong, H., Jia, J., Huo, L., Deng, Y., Xie, T., & Zhao, L. (2021). Demonstration and multi-perspective analysis of industrial-scale co-pyrolysis of biomass, waste agricultural film, and bituminous coal. Journal of Cleaner Production, 290, 125819. https://doi.org/10.1016/j. jclepro.2021.125819
  • 33. Zheng, M., Bai, Y., Han, H., Zhang, Z., Xu, C., Ma, W., & Ma, W. (2021). Robust removal of phenolic compounds from coal pyrolysis wastewater using anoxic carbon-based fluidized bed reactor. Journal of Cleaner Production, 280, 124451. https://doi.org/10.1016/j.jclepro.2020.124451
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39ee88dc-8adf-4bdf-badd-de94a9a7af26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.