PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reverse anionic flotation of dolomitic collophanite using a mixed fatty acid collector : adsorption behavior and mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Collophanite in south China generally has a high MgO level, which negatively impacts wet-process phosphoric acid production and cannot be utilized directly. A novel mixed fatty acid soap (GSWF01) was employed as a collector for dolomite. A single reverse flotation experiment was performed on a dolomitic collophanite from Guizhou, China under different pH and collector dosages. A phosphate concentrate with P2O5 grade of 33.73%, MgO content of 1.07%, MER value (ω(MgO+Al2O3+Fe2O3)/ω(P2O5)) of 4.86% and phosphorus recovery of 91.06% was obtained. The beneficiation indexes of GSWF01 were better than that of sodium oleate (NaOL). The adsorption behavior and mechanism of GSWF01 on dolomite surface were investigated using quartz crystal microbalance with dissipation (QCM-D), atomic force microscope (AFM), infrared spectrometer (IR), and zeta potentiometer. The results revealed that GSWF01 chemically reacted with metal ions (Ca2+, Mg2+, etc.) on the surface of dolomite to generate fatty acid salt precipitation (chemisorption). The adsorbed layer transitioned from dense to loose in two stages, resulting in a stable double-layer adsorption structure. Moreover, in a weak acidic solution environment, physical adsorption of fatty acid molecules (RCOOH ((aq)) and fatty acid ion-molecular association compounds (RCOOH• RCOO-) generated by hydrolysis can also occur on the dolomite surface. These are the main reasons for the hydrophobic floating of dolomite. This is of great significance to the development of a novel high-efficiency dolomite collector and the enhancement of flotation process for carbonate collophanite.
Rocznik
Strony
art. no. 151519
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • State Key Laboratory of Mineral Processing, Beijing, 102628, China
  • State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Guiyang, 550002, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
  • State Key Laboratory of Mineral Processing, Beijing, 102628, China
  • State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Guiyang, 550002, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • State Key Laboratory of Mineral Processing, Beijing, 102628, China
  • State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Guiyang, 550002, China
Bibliografia
  • CAO, Q.B., CHENG, J. H., WEN, S. M., LI, C. X., BAI, S. J., LIU, D., 2015. A mixed collector system for phosphate flotation. Minerals Engineering, 78, 114-121.
  • DENG, J., ZHANG, K. C., HE, D. S., ZHAO, H. Q., HAKKOU, R., BENZAAZOUA, M., 2020. Occurrence of sesquioxide in a mid-low grade collophane-sedimentary apatite ore from Guizhou, China. Minerals, 10, 1038.
  • DENG, M. J., LIU, Q. X., XU, Z. H., 2013. Impact of gypsum supersaturated solution on surface properties of silica and sphalerite minerals. Minerals Engineering, 47, 6-15.
  • DERHY, M., YASSINE, T., HAKKOU, R., BENZAAZOUA, M., 2020. Review of the main factors affecting the flotation of phosphate ores. Minerals, 10, 1109.
  • GUTIG, C., GRADY B. P., STRIOLO, A., 2008. Experimental studies on the adsorption of two surfactants on solid-aqueous interfaces: Adsorption isotherms and kinetics. Langmuir, 24, 4806-4816.
  • HU, Y. H., WANG, D. Z., 1990. Mechanism of fatty acid sodium flotation of salt-type minerals—a study. Mining and Metallurgical Engineering, 10, 20-23.
  • KOU, J., TAO, D., XU, G., 2010a. A study of adsorption of dodecylamine on quartz surface using quartz crystal microbalance with dissipation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368, 75-83.
  • KOU, J., TAO, D., XU, G., 2010b. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. International Journal of Mineral Processing, 95, 1-9.
  • KOU, J., XU, S., SUN, T., SUN, C., GUO, Y., WANG, C., 2016. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation. International Journal of Mineral Processing, 154, 24-34.
  • KOU, J., GUO, Y., SUN, T. C., XU, S. H., XU, C. Y., 2015. Adsorption mechanism of two different anionic collectors on quartz surface. Journal of Central South University (Science and Technology) , 46, 4005-4014.
  • LI, F., TIAN, P. J., 2016. Research on reverse flotation test and mechanism of a siliceous collophanite. Industrial Minerals & Processing, 45, 8-10.
  • LIU, C., FENG, Q. M., ZHANG, G. F., 2016. Flotation behaviors and mechanism of hemimorphit using sodium oleate as collector. The Chinese Journal of Nonferrous Metals, 26, 878-883.
  • LIU, X., LI, C. X., LUO, H. H., CHENG, R. J., LIU, F. Y., 2017. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. International Journal of Mineral Processing, 165, 20-27.
  • LIU, X., LUO, H. H., CHENG, R. J., LI, C. X., ZHANG, J. H., 2017a. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Minerals Engineering, 109, 162-168.
  • LIU, X., RUAN, Y. Y., LI, C. X., CHENG, R. J., 2017b. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. International Journal of Mineral Processing, 167, 95-102.
  • MEHDILO, A., IRANNAJAD, M., REZAI, B., 2013. Effect of chemical composition and crystal chemistry on the zeta potential of ilmenite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 428, 111-119.
  • PAIVA, P. R. P., MONTE, M. B. M., SIMAO, R. A., GASPAR, J. C., 2011. In situ AFM study of potassium oleate adsorption and calcium precipitate formation on an apatite surface. Minerals Engineering, 24, 387-395.
  • PAUL, S., PAUL, D., BASOVA, T., RAY, A. K., 2008. Studies of adsorption and viscoelastic properties of proteins onto liquid crystal phthalocyanine surface using quartz crystal microbalance with dissipation technique. The Journal of Physical Chemistry C, 112, 11822-11830.
  • QI, Z., SUN, C. Y., 2013. Study of flotation behavior and mechanism of dolomite with fatty acid as collector. Journal of China University of Mining & Technology, 42, 461-465.
  • RUAN, Y. Y., HE, D. S., CHI, R. A., 2019. Review on beneficiation techniques and reagents used for phosphate ores. Minerals, 9, 253.
  • RUAN, Y. Y., ZHANG, Z. Q., LUO, H. H., XIAO, C. Q., ZHOU, F., CHI, R. A., 2017. Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector. Minerals, 7, 65.
  • RUAN, Y.Y., ZHANG, Z. Q., LUO, H. H., XIAO, C. Q., ZHOU, F., CHI, R. A., 2018. Effects of metal ions on the flotation Effects of metal ions on the flotation of apatite, dolomite and quartzof apatite, dolomite and quartz. Minerals, 8, 141. . Minerals, 8, 141.
  • SAUERBREY, G., 1959. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Zeitschrift für Physik, 155, 206-222.
  • SEDEVA, I. G., FETZER, R., FOMASIERO D., RALSTON, J., BEATTIE, D. A., 2010. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements. Journal of Colloid and Interface Science, 345, 417-426.
  • SHI, B., XU, W., TIAN, Y., CHEN, Y., ZHAO, Y. Y., CHENG, Q., MEI, G. J., 2021. Study on reverse flotation of a calcium-magnesium phosphate rock in Guizhou using collector WF-04 and its function. Industrial Minerals & Processing, 50, 10-13.
  • TENG, F. C., LIU, Q. X., ZENG, H. B., 2012. In situ kinetic study of zinc sulfide activation using a quartz crystal microbalance with dissipation (QCM-D). Journal of Colloid and Interface Science, 368, 512-520.
  • VOGT, B. D., LIN, E. K., WU, W. L., WHITE, C. C., 2004. Effect of film thickness on the validity of the sauerbrey equation for hydrated polyelectrolyte films. The Journal of Physical Chemistry B, 108, 12685-12690.
  • VOINOVA, M.V., RODAHL, M., JONSON, M., KASEMO, B., 1998. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Physica Scripta, 59, 391-396.
  • WANG, D. Z., HU, Y. H., 1998. Flotation Solution Chemistry. Hunan science & technology press, Changsha, China.
  • WENG, S. F, 2010. FTIR Spectral Analysis. Chemical Industry Pres, Beijing, China.
  • XU, W., SHI, B., TIAN, Y., CHEN, Y., LI, S. Q., CHENG, Q., MEI, G. J., 2021. Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China. Minerals, 11, 1249.
  • XU, W., LAN, F., YANG, S., HU, D. Y., ZHANG, R. Z., CHEN, Y., XIE, T., 2012. Study on reverse-flotation test of the new combined collector LG-01 for a carbonate phosphate from Guizhou. Metal Mine, 41, 99-101.
  • YU, J., GE, Y. Y., GUO, X. L., GUO, W. B., 2016. The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore. Separation and Purification Technology, 161, 88-95.
  • ZOU, H., CAO, Q. B., LIU, D. W., YU, X. C., LAI, H., 2019. Surface features of fluoroapatite and dolomite in the reverse flotation process using sulfuric acid as a depressor. Minerals, 9, 33.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39e93bb9-e697-4eb6-b32b-38e368c48a3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.