Identyfikatory
Warianty tytułu
Prognozy przepływów mocy-przegląd status quo. Część 1: Predykcja generacji z OZE
Języki publikacji
Abstrakty
In recent years, rising electricity demand accompanied by CO2 reduction targets has dramatically increased RES penetration into power systems, giving rise to the need to estimate power production and demand to properly manage power infrastructure. This paper is Part 1 of an extensive, two-part review of recent literature related to forecasts of RES generation, electricity demand and power flows. This Part 1 focuses on forecasts of RES generation.
W ostatnich latach chęć pokrycia zapotrzebowania na energię elektryczną przy jednoczesnej redukcji CO2, spowodowała silny wzrost mocy zainstalowanej OZE. Konsekwencją jest potrzeba szacowania generacji z OZE oraz zapotrzebowania na energię, by poprawnie zarządzać pracą systemu elektroenergetycznego. Niniejszy artykuł to 1 z 2 części szerokiej analizy najnowszej literatury dotyczącej prognoz generacji z OZE, zapotrzebowania i przepływów mocy i prezentuje pierwszy z aspektów.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--4
Opis fizyczny
Bibliogr. 24 poz., tab.
Twórcy
autor
- Politechnika Warszawska, Instytut Elektroenergetyki, ul. Koszykowa 75, 00-662 Warszawa
Bibliografia
- [1] EC European Commission and others. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30, Official Journal of the European Union Belgium; 2009. Available: https://eur-lex.europa.eu/eli/dir/2009/28/oj
- [2] General Secretariat of the European Council. 2030 Climate And Energy Policy Framework European Council 23/24 October 2014 – Conclusions, Brussels; 24 October 2014. Available:http://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf
- [3] European Commission. Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of energy from renewable sources, COM(2016) 767 final/22016/0382(COD), Brussels; 23.02.2017
- [4] Popławski T., Dudek G., Łyp J., Forecasting methods for balancing energy market in Poland, Electrical Power and Energy Systems, 65 (2015) 94–101
- [5] Sowiński J., Model of medium-term forecasting of energy mix in Poland, E3S Web of Conferences 108, 01002 (2019)
- [6] Dudek G., Pełka P., Prognozowanie miesięcznego zapotrzebowania na energię elektryczną metodą k najbliższych sąsiadów, Przeglad Elektrotechniczny 1(4), (2017), 64-67
- [7] Çevik H., Çunkaş M. Polat K., A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods, Physica A, 534 (2019),1-16
- [8] Fang X ,Hodge B-M. ,Du E., Zhang N., Li F., Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: A sparse correlation matrix approach, Applied Energy, 230 (2018), 531-539
- [9] Rajanarayan Prusty B., Debashisha Jena, A spatiotemporal probabilistic model‐based temperature‐augmented probabilistic load flow considering PV generations, International Transactions on Electrical Energy Systems, 29 (2019), no. 5
- [10] Polish Power Transmission System data state at 31.12.2019,https://www.pse.pl/web/pse-eng/areas-ofactivity/polish-power-system/system-in-general, accessed 24.03.2020
- [11] Dołęga W., National grid electrical power infrastructure – threats and challenges, Energy policy journal,21 (2018), no. 2,89-104
- [12] Zhao X., Liu Jinfu.,Yu D., Chang J., One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data, Energy Conversion and Management, 164 (2018), 560–569
- [13] Liu Z., Jiang P., Zhang L., Niu X., A combined forecasting model for time series: Application to short-term wind speed forecasting, Applied Energy, 259 (2020)
- [14] Lledó Ll., Torralba V., Soret A., Ramon J., Doblas-Reyes F.J., Seasonal forecasts of wind power generation, Renewable Energy ,143 (2019), 91-100
- [15] MacLeod D., Torralba V., Davis M., Doblas-Reyes F., Transforming climate model output to forecasts of wind power production: how much resolution is enough?, METEOROLOGICAL APPLICATIONS,25 (2018),1-10
- [16] Wang C, Zhang H., Ma P., Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network, Applied Energy, 259 (2020)
- [17] Afshari-Igder M., Niknam T., Khooban M-H., Probabilistic wind power forecasting using a novel hybrid intelligent method, Neural Comput & Applic,30 (2018),473–485
- [18] López E., Valle C., Allende H., Gil E., Madsen H., Wind Power Forecasting Based on Echo State Networks and Long Short- Term Memory, Energies, 11 (2018)
- [19] Kushwaha V., Pindoriya N.M, A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast, Renewable Energy, 140 (2019), 124-139
- [20] Lahouar A., Slama J.B.H., Hour-ahead wind power forecast based on random forests, Renewable Energy, 109 (2017), 529-541
- [21] Shang C., Wei P., Enhanced support vector regression based forecast engine to predict solar power output, Renewable Energy, 127 (2018), 269-283
- [22] Wang Z., Wang W., Liu C., Wang Z., Hou Y., Probabilistic Forecast for Multiple Wind Farms Based on Regular Vine Copulas IEEE TRANSACTIONS ON POWER SYSTEMS, 33(2018), no. 1
- [23] Felder M., Sehnke F., Ohnmeiß K., Schröder L., Junk C., Kaifel A., Probabilistic short term wind power forecasts using deep neural networks with discrete target classes, Adv. Geosci., 45 (2018), 13–17
- [24] Umizaki M., Uno F., Oozeki T., Estimation and forecast accuracy of regional photovoltaic power generation with upscaling method using the large monitoring data in Kyushu, 1Japan, IFAC PapersOnLine, 51-28 (2018), 582–585
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39e73b2b-0f00-4461-9ad2-f511358160e8