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1. Introduction 

Semi-Markov decision processes theory delivers  
methods giving the opportunity to control   an 
operation processes  of the systems. In such kind of 
problems we want to choose the  most rewarding 
process among some alternatives available for the 
operation.  

 
2. Semi-Markov decision processes 

Semi-Markov decision processes theory was de 
veloped by Jewell [6], Howard  [5], Main & Osaki 
[9],  Gercbacha [2]. Those processes were also 
discussed by F.Grabski [3]. 
Semi-Markov (SM) decision  process is such   SM 
process with a finite states space,  that its trajectory  
depends on decisions which are made at an initial 
instant 0τ  and at  the states changes moments  

,...,...,1 nττ . By )( nid τ  we denote a decision at the 

moment  nτ , under condition  iX n =)(τ .  We 

assume that a set of decision in each state i , 
denoting by iD , is finite.  To take decision   iDk ∈ ,  
means to select  kth row   among  the alternating  
rows    of the semi-Markov kernels.  
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It determines the evolution of the system on the 
interval ),[ 1+nn ττ .    More  precisely,  the decision                      

ini Dkd ∈=)(τ   means, that according to the 

distribution  ):( )( Sjp k
ij ∈ , },...,2,1{ NS =   a state  j 

is drawn, for which the process jumps at the 
moment 1+nτ , and the length of the interval  

),[ 1+nn ττ  is chosen according to distribution given 

by the CDF  ).()( tF k
ij  

A  sequence 
 
   ,...}2,1,0:))(),...,({( 1 == nddd nNn ττ               (3)                            

           
is called a strategy.  The  strategy is said to be 
Markovian, if for every state  ,Si ∈  and every 
moment ,...2,1, =nnτ  of the state change the 

decision  ini Dd ∈)(τ  does not depend on process 

evolution until the moment .nτ  Moreover, if this 

decision  does not depend on  n ,  ini dd =)(τ , then 
it is called a stationary decision.  In this case we 
obtain a homogeneous semi-Markov process.  
Optimization of the semi-Markov decision process 
consists in choosing  the strategy which  maximizes 
the gain of the system.  
 
3. Optimization for a finite states change  

 
Grabski Franciszek 
Navy University, Gdynia, Poland 

 
 
 

Semi-Markov decision process as a safety and reliability model of a sea 
transport operation 

 
 
 
 

Keywords 

safety reliability, semi-Markov decision process, transport operation  
 

Abstract 

A problem of optimization of a sea transport operation in safety and reliability aspect is discussed in the 
paper. To describe and solve this problem, a semi-Markov decision processes theory is applied. The semi-
Markov decision process as a model of the sea transport operation is constructed.  An algorithm which allows 
to compute the optimal strategy of the operation in safety and reliability aspect    is presented.  

 
 



Grabski Franciszek 
Semi-Markov decision process as a safety and reliability model of a sea transport operation 

 

 100 

We will  consider  only a problem of semi-Markov  
process optimization  for a finite states change  m, 
so  we will investigate the process at time interval 

),0[ mτ .    
To formulate the optimization problem we have to 
introduce the reward structure for the process.  We 
assume that the system  occupies the state  i  having 
chosen a successor state  j ,  it  earns a gain (reward) 
at a rate 
 

   i
k

ij DkSjixr ∈∈ ,,),()(                            (4)    

         
at a time  x  entering  state  i  for a decision  iDk ∈ . 

The function )(xr k
ij  is called the “yield rate” of  

state i   at time  x   when the successor state is j and 
k is chosen decision [6]. A negative reward at a rate  

)()( xr k
ij  denotes loss or a cost of that one. A value 

of a function 
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        (5)   

                 
denotes  the reward  the system earns by spending a 
time t in  state i before  making a transition to  state  
j  for the decision iDk ∈ . When the transition from 
the state  i  to  state  j  for the   decision  k  is 
actually  made , the system earns  a bonus  a fixed 
sum. The bonus is denotes by 
 
   i

k
ij DkSjib ∈∈ ,,,)(                                          (6) 

 
A number 
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is  an expected value of the gain (reward)  that is 
generated by the process in  state i  at one interval  
of its realization for the decision iDk ∈ .    

 By SidV mi ∈),(  we denote  the expected value of 
the gain (reward)  that is generated by the process 
during  a time interval ),0[ mτ under the condition 

that the  initial state is Si ∈   and   a sequence of 
polices is    
 
   )1,...,1,0:))(),...,((( 1 −== mnd nNnm τδτδ  
 
By  SjdV mj ∈− ),( 1  we denote the  expected value 

of the gain (reward)  that is generated by the 
process during  a time interval ),[ 1 mττ  under the 

condition that the process has just entered the state 
Sj ∈  at the moment 1τ  and a sequence of polices  

 
   }1,...,1:))(),...,({( 11 −==− mnd nNnm τδτδ , 
 
is choosen .                                                           
The expected value of the gain  during  a time 
interval ),0[ mτ under the condition that the  initial 

state is Si ∈   ),0[ mτ  is the  expected value of the 
gain (reward)  that is generated by the process 
during  a time interval ),0[ 1τ  and  the gain 
(reward)  that is generated by the process during a 
time ),[ 1 mττ . Since 
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By substitution we obtain  
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The strategy (the sequence of polices) *

md  is called 
optimal in a gain maximum problem on interval  

),[ 0 mττ  for the semi-Markov decision process 
which start from a state  i,  if 
 
   )]([max)( *

mi
md

mi dVdV =
   

                                                                                            
It means that 
 

   )()( *
mimi dVdV ≥  

 
for all strategies md .  
The optimal strategy we can get by using the 
dynamic programming technique.   Applying 
Bellman principle of optimality  we get an 
algorithm for obtaining the optimal strategy. This 
algorithm is defined by the following formulas  
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To obtain the police *

0d   we start from (11). Based 
on formula 
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we find strategy 
 
   )1,0:))(),...,((( **

1
*
1 == nd nNn τδτδ  

                            
in next step Continue this procedure we obtain  the 
optimal strategy 
  

   )1,...,1,0:))(),...,((( **
1

* −== mnd nNnm τδτδ  

  
4. Decision semi-Markov model of a sea 
transport  operation 

The sea transport operation consist of some steps, 
which are realized in turn. Duration of the each 
stage is assumed to be positive random variable. 
Events that cause perturbation of the ship reliability 
or (and) safety my occur during operation.  The 
perturbations increase the time of operation and the 
probability of failure as well. The main goal of this 
paper is to construct semi-Markov decision process 
describing a simple sea transport operation. 
 
4.1. Description and assumptions  

The sea transport operation consists of  4 stages 
which following in turn. The stage assume to be: 
stopover of the ship in the port  A , cruise from the 
port  A  to port  B   stopover  in the port  B, cruise 
from the port  B  to port  A . 

We assume the duration of  i-th stage for  decision  

iDk∈ ,  is a nonnegative random variable)(k
iξ  with 

a cumulative probability distribution   function    
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Operation on each step may be perturbed. We 
assume that  no  more than one event  causing the 
perturbation of the operation on i-th  stage for 
decision iDk ∈ ,   may occur. The time to  this 

event is a nonnegative random variable )(k
iη  with an 

exponential probability distribution      
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The duration of the perturbed i-th stage of the sea 
transport operation for decision iDk +∈ 4 , is a 

nonnegative random variable )(k
iζ  with a 

probability distribution        
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The perturbation degreases   the  probability of the 
operation failure. We suppose that time to failure of 
the perturbed operation on the  i-th  stage for  
decision  iDk ∈   is a nonnegative random variable 

)(k
iν   that has a exponential distribution with a 

parameter  )(k

i
β  

 

   ( ) i

tk
ik
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)(
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βν    
 
We assume that all those random variables are 
mutually independent.  

 
4.2. Model 

To construct model we start from a definition of the 
operation states. Suppose the states of the ship 
operation are: 

1. stopover of the ship, loading and unloading 
in the port  A  

2. cruise from the port  A  to port  B  
3. stopover, loading and unloading in the port  

B, 
4. cruise from the port  B  to port  A  
5. the ship stopover, loading and unloading in 

the port  A with perturbation of its 
reliability or (and) safety  

6. cruise from the port A to port B with 
perturbation of its reliability or (and) safety 

7. stopover,  loading  and unloading in the 
port 
B with perturbation of its reliability or 
(and)      safety 

8. cruise from the port  B  to port  A with  
perturbation of its reliability or (and) safety  

9. failure of the operation   
 

Transition graph for the sea transport operation is 
shown in Figure 1. 
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Figure 1. Transition graph for the sea transport 
operation 

 
To obtain a semi-Markov model we have to define 
all nonnegative elements of the semi- Markov 
kernel see  [3], [4], [8 ]. 
The semi-Markov kernel  corresponding to the 
graph shown in Figure 1  take a form 
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Based on assumptions

 
we have to define functions  
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Having the semi-Markov kernel we can find 
transition matrix of the embedded Markov chain. 
Elements  of this matrix are given by the formula 
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To construct the semi-Markov decision model of 
the sea transport operations we need also to assume 
sets of decisions ,9,...,2,1, =iDi  

which generate  
parameters. For simplicity we suppose that each set  

,9,...,2,1, =iDi  consists of two components only: 

.9,...,2,1}2,1{ == iDi  
We  assume 
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where )( )()( k
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k
ij TEm =  denotes the expectation of 

the holding time of the state  i  if the successor state 
will be  j .   
 
4.3. Algorithm of choosing optimal strategy 
for the sea transport operations
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3. For  l=1,2,…,m-1 and for all Si ∈  find *
ld  

such that 
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5. Concluding remarks 

To formulate the real optimization problem of the 
sea transport operation we have to know decisions 
in each state    and  the corresponding parameters. 
For example, for the state 2 the set of decision D2 
could consist of  two options 1 and 2 where, 

1  -  normal cruise 
2  -  fast cruise 

 
Transition probabilities from the state 2  are: 
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Those parameters or characteristics which define 
(generate) them, we can  assess  using one of 
statistics  or  expert methods.    
The “yield rates” denoting the cost rates for state 2    
are negative numbers: 
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numbers:  
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The bonus denoting the gain in the state 2  which   
are positive numbers: 
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should be known for  a decision maker.  

 
The expected value of the gain (reward)  which is 
generated by the process in  state  2  at one interval  
of its realization for the decision 1 and 2 are   
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