PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-distributed network of low-coherence fiber-optic Fabry-Pérot sensors with cavity length-based addressing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Distributed measurement often relies on sensor networks. In this paper, we present the construction of low-coherence fiber-optic Fabry-Pérot sensors connected into a quasi-distributed network. We discuss the mechanism of spectrum modulation in this type of sensor and the constraints of assembly of such sensors in the network. Particular attention was paid to separate the signals from individual sensors which can be achieved by cavity length-based addressing. We designed and built a laboratory model of a temperature sensors network. The employed sensors are low-coherence Fabry-Pérot interferometric sensors in a fiber-optics configuration. The extrinsic sensor cavity utilizes the thermal expansion of ceramics, and the sensors are addressed by the different lengths of the cavities. The obtained test results show that the signal components from each sensor can be successfully separated, and the number of sensors could be expanded depending on the FWHM of the light source.
Rocznik
Strony
289--305
Opis fizyczny
Bibliogr. 45 poz., rys., wykr., wzory
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland
Bibliografia
  • [1] Tian, J., Lu, Y., Zhang, Q., & Han, M. (2013). Microfluidic refractive index sensor based on an all-silica in-line Fabry-Pérot interferometer fabricated with microstructured fibers. Optics Express, 21(5), 6633-6639. https://doi.org/10.1364/OE.21.006633
  • [2] Liao, C. R., Hu, T. Y., & Wang, D. N. (2012). Optical fiber Fabry-Pérot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Optics Express, 20(20), 22813-22818. https://doi.org/10.1364/OE.20.022813
  • [3] Selvas-Aguilar, R., Castillo-Guzman, A., Cortez-Gonzalez, L., Toral-Acosta, D., Martinez-Rios, A., Anzueto-Sanchez, G., Duran-Ramirez, V. M., & Arroyo-Rivera, S. (2016). Noncontact Optical Fiber Sensor for Measuring the Refractive Index of Liquids. Journal of Sensors, 2016, 1-6. https://doi.org/10.1155/2016/3475782
  • [4] Marzejon, M., Karpienko, K., Mazikowski, A., & Jędrzejewska-Szczerska, M. (2019). Fibre-optic sensor for simultaneous measurement of thickness and refractive index of liquid layers. Metrology and Measurement Systems, 26(3), 561-568. https://doi.org/10.24425/mms.2019.129584
  • [5] Harun, S. W., Yang, H. Z., Arof, H., & Ahmad A. (2012). Theoretical and experimental studies on coupler-based fiber optic displacement sensor with concave mirror. Optik, 123(23), 2105-2108. https://doi.org/10.1016/j.ijleo.2011.10.006
  • [6] Zhang, Q., Zhu, T., Hou, Y., & Chiang, K. S. (2013). All-fiber vibration sensor based on a Fabry-Pérot interferometer and a microstructure beam. Journal of the Optical Society of America B, 20(5), 1211-1215. https://doi.org/10.1364/JOSAB.30.001211
  • [7] Kim, D. H., Han, J. H., & Lee, I. (2005). Vibration Measurement and Flutter Suppression Using Patch-type EFPI Sensor System. International Journal of Aeronautical and Space Sciences, 6(1), 17-26. https://doi.org/10.5139/IJASS.2005.6.1.017
  • [8] Jiang, M., & Gerhard, E. (2001). A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Pérot interferometer. Sensors and Actuators A: Physical, 88(1), 41-46. https://doi.org/10.1016/S0924-4247(00)00494-5
  • [9] Yang, F., Wang, Z. K., & Wang, D. N. (2019). A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber. Optical Fiber Technology, 47, 102-106. https://doi.org/10.1016/j.yofte.2018.11.029
  • [10] Dai, L., Wang, M., Cai, D., Rong, H., Zhu, J., Jia, S., & You, J., (2013). Optical Fiber Fabry-Pérot Pressure Sensor Based on a Polymer Structure. IEEE Photonics Technology Letters, 25(24), 2505-2508. https://doi.org/10.1109/LPT.2013.2287289
  • [11] Du, Y., Qiao, X., Rong, Q., Yang, H., Feng, D., Wang, R., Hu, M., & Feng, Z. (2014). A Miniature Fabry-Pérot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber. IEEE Sensors Journal, 14(4), 1069-1073. https://doi.org/10.1109/JSEN.2013.2286699
  • [12] Zhao, Y., Zhao, J., & Zhao, Q. (2020). High sensitivity seawater temperature sensor based on no-core optical fiber. Optical Fiber Technology, 54. https://doi.org/10.1016/j.yofte.2019.102115
  • [13] Xu, W., Huang, W.-B., Huang, X.-G., & Yu, C. (2013). A simple fiber-optic humidity sensor based on extrinsic Fabry-Pérot cavity constructed by cellulose acetate butyrate film. Optical Fiber Technology, 19(6), 583-586. https://doi.org/10.1016/j.yofte.2013.09.005
  • [14] Lv, R.-Q., Zhao, Y., Wang, D., & Wang, Q. (2014). Magnetic Fluid-Filled Optical Fiber Fabry-Pérot Sensor for Magnetic Field Measurement. IEEE Photonics Technology Letters, 26(3), 217-219. https://doi.org/10.1109/LPT.2013.2290546
  • [15] Wang, W., & Li, F., (2014). Large-range liquid level sensor based on an optical fibre extrinsic Fabry-Pérot interferometer. Optics and Lasers in Engineering, 52, 201-205. https://doi.org/10.1016/j.optlaseng.2013.06.009
  • [16] Lu, Y., Li, H., Qian, X., Zheng, W., Sun, Y., Shi, B., & Zhang Y. (2020). Beta-cyclodextrin based reflective fiber-optic SPR sensor for highly-sensitive T detection of cholesterol concentration. Optical Fiber Technology, 56, 102187-1-6. https://doi.org/10.1016/j.yofte.2020.102187
  • [17] Huang, Y. W., Tao, J., & Huang, X. G. (2016). Research Progress on F-P Interference-Based Fiber-Optic Sensors. Sensors (Switzerland), 16(9), 1424. https://doi.org/10.3390/s16091424
  • [18] Perez-Herrera, R. A., & Lopez-Amo, M. (2013). Fiber optic sensor networks. Optical Fiber Technology, 19(6), 689-699. https://doi.org/10.1016/j.yofte.2013.07.014
  • [19] Lönnermark, A., Hedekvist, P. O., & Ingason, H. (2008). Gas temperature measurements using fibre Bragg grating during fire experiments in a tunnel. Fire Safety Journal, 43(2), 119-126. https://doi.org/10.1016/j.firesaf.2007.06.001
  • [20] Huang, Y., Fang, X., Bevans, W. J., Zhou, Z., Xiao, H., & Chen, G. (2013). Large-strain optical fiber sensing and real-time FEM updating of steel structures under the high temperature effect. Smart Materials and Structures, 22(1). https://doi.org/10.1088/0964-1726/22/1/015016
  • [21] Kersey, A. D. (1996). A Review of Recent Developments in Fiber Optic Sensor Technology. Optical Fiber Technology, 2(3), 291-317. https://doi.org/10.1006/ofte.1996.0036
  • [22] Márquez-Cruz, V. A., & Hernández-Cordero, J. A. (2014). Fiber optic Fabry-Pérot sensor for surface tension analysis. Optics Express, 22(3), 3028-3038. https://doi.org/10.1364/OE.22.003028
  • [23] Jędrzejewska-Szczerska, M. (2014). Response of a New Low-Coherence Fabry-Pérot Sensor to Hematocrit Levels in Human Blood. Sensors (Switzerland), 14(4), 6965-6976. https://doi.org/10.3390/s140406965
  • [24] Li, M., Wang, S., Jiang, J., Liu, K., Yu, L., & Liu, T. (2020). Cryogen adaptive and integrated differential pressure sensor for level sensing based on an optical Fabry-Pérot interferometer. Applied Optics, 59(8), 2457-2461. https://doi.org/10.1364/AO.384293
  • [25] Zhang, X., Wang, W., Chen, H., Tang, Y., Ma, Z., & Wang, K. (2019). Two-Parameter Elliptical Fitting Method for Short-Cavity Fiber Fabry-Pérot Sensor Interrogation. Sensors (Switzerland), 19(1), 36-1-11. https://doi.org/10.3390/s19010036
  • [26] Wei, H., & Krishnaswamy, S. (2020). Adaptive fiber-ring lasers based on an optical fiber Fabry-Pérot cavity for high-frequency dynamic strain sensing. Applied Optics, 59(2), 530-535. https://doi.org/10.1364/AO.377368
  • [27] Maciak, E. (2019). Low-coherence Interferometric Fiber Optic Sensor for Humidity Monitoring Based on Nafion®Thin Film. Sensors (Switzerland), 19(3). https://doi.org/10.3390/s19030629
  • [28] Liu, Y., & Qu, S. (2014). Optical fiber Fabry-Pérot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing. Applied Optics, 53(3), 469-474. https://doi.org/10.1364/AO.53.000469
  • [29] Nespereira, M., Coelho, J. M. P., & Rebordaão, J. M. (2019). A Refractive Index Sensor Based on a Fabry-Pérot Interferometer Manufactured by NIR Laser Microdrilling and Electric Arc Fusion. Photonics, 6(4). https://doi.org/10.3390/photonics6040109
  • [30] Yang, Y., Wang, Y., Jiang, J., Zhao, Y., He, X., & Li, L. (2019). High-sensitive all-fiber Fabry-Pérot interferometer gas refractive index sensor based on lateral offset splicing and Vernier effect. Optik (Stuttg), 196. https://doi.org/10.1016/j.ijleo.2019.163181
  • [31] Domínguez-Flores, C. E., Monzón-Hernández, D., Minkovich, V. P., Rayas, J. A., & Lopez- Cortes, D. (2020). In-Fiber Capillary-Based Micro Fabry-Pérot Interferometer Strain Sensor. IEEE Sensors Journal, 20(3), 1343-1348. https://doi.org/10.1109/JSEN.2019.2948013
  • [32] Shi, Q., Lv, F., Wang, Z., Jin, L., Hu, J.J., Liu, Z., Kai, G., & Dong, X. (2008). Environmentally Stable Fabry-Pérot-Type Strain Sensor Based on Hollow-Core Photonic Bandgap Fiber. IEEE Photonics Technology Letters, 20(4), 237-239. https://doi.org/10.1109/LPT.2007.913335
  • [33] Pluciński, J., & Karpienko, K. (2016). Fiber optic Fabry-Pérot sensors: modeling versus measurements results. Proc. SPIE 10034, 11th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods, 100340H. https://doi.org/10.1117/12.2244578
  • [34] Pluciński, J., & Karpienko, K. (2016). Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes: modeling and experiments. Proc. SPIE 10161, 14th International Conference on Optical and Electronic Sensors, 101610F. https://doi.org/10.1117/12.2247510
  • [35] Pluciński, J., Wierzba, P., & Kosmowski, B. B. (2005). Time-of-flight fiber optic sensors for strain and temperature measurement. Proceedings of SPIE 5952, Optical Fibers: Applications, 59521H. https://doi.org/10.1117/12.622880
  • [36] Engelbrecht, R. (2017). Fiber Optic Strain and Temperature Sensing: Overview of Principles. B6 - Distributed and Fiber Bragg Grating Sending I, Proceedings Sensor 2017, Germany, 255-260. https://doi.org/10.5162/sensor2017/B6.1
  • [37] Corning(2014).Corning®SMF-28®UltraOpticalFiber. https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf
  • [38] Thorlabs (2015). Single Mode Fiber with Ø 900 μm Hytrel Jacket - SMF-28-J9.
  • [39] Marcuse, D. (1977). Loss analysis of single-mode fiber splices. The Bell System Technical Journal 56(5), 703-718. https://doi.org/10.1002/j.1538-7305.1977.tb00534.x
  • [40] Bouma, B. E., & Tearney, G. J. (2002). Handbook of Optical Coherence Tomography. New York: Marcel Dekker.
  • [41] Drexler, W., & Fujimoto, J. G. (2015). Optical Coherence Tomography: Technology and Applications (2nd ed.). New York: Springer International Publishing.
  • [42] Strąkowski, M., Pluciński, J., & Kosmowski, B. B. (2011). Polarization sensitive optical coherence tomography with spectroscopic analysis. Acta Physica Polonica A, 120(4), 785-788. https://doi.org/10.12693/APhysPolA.120.785
  • [43] Strąkowski, M., Kraszewski, M., Trojanowski, M., & Pluciński, J. (2014). Time-frequency analysis in optical coherence tomography for technical objects examination. Proceeding of SPIE 9132, Optical Micro- and Nanometrology V, 91320N. https://doi.org/10.1117/12.2052142
  • [44] Kamińska, A. M., Strąkowski, M. R., & Pluciński, J. (2020). Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements. Sensors, 20(19), 5653. https://doi.org/10.3390/s20195653
  • [45] Ametek (2020). Temperature calibrator Ametek ETC-400A specification. https://www.testequipmentdepot.com/ametek/temperaturecalibrator/etc400a.htm
Uwagi
1. This research work was supported by the DS program of the Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, and the TASK Academic Computer Centre in Gdańsk, Poland
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39d8f9b2-bcb9-4568-aada-680ab3ea8519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.