Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents and discusses the results of numerical studies of multi-layered hyperbolic metamaterials (HMMs). Such structures are built of alternating thin layers of conductive (e.g., metal or alternative conductive material) and dielectric materials. The thicknesses of these layers are much smaller than the operating wavelength, usually of the order of a few or tens of nanometres. Indium tin oxide (ITO), which is an alternative conductive plasmonic material from the group of transparent conductive oxides (TCOs), was used in the conductive layers. Silica (SiO₂) was used as a material in the dielectric layers. As a result of a simulation-based optimization, the layer thicknesses of two components forming the structure were chosen to be 20 nm each. Four variants of multilayer structures with different numbers of elementary cells forming the structure, N, for N = 5, 10, 15, and 20, respectively, were investigated by both analytical methods using the transfer matrix method (TMM) and simulation methods using finite-difference time-domain (FDTD). The results confirmed the hyperbolic dispersion of effective electric permittivity and tunability of the structure in the near-infrared (NIR) range. Moreover, a complete agreement of the results confirmed the complementarity of the two methods – both analytical TMM and simulation FDTD. The proposed HMMs structures may have potential applications as tunable edge filters.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e152767
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] Sun, J. & Litchinitser, N. M. Metamaterials. in Fundamentals and Applications of Nanophotonics (ed. Haus, J. W.) 253–307 (Elsevier, 2016). https://doi.org/10.1016/B978-1-78242-464-2.00009-9
- [2] Shekhar, P., Atkinson, J. & Jacob, Z. Hyperbolic metamaterials: fundamentals and applications. Nano Converg. 1, 14 (2014). https://doi.org/10.1186/s40580-014-0014-6
- [3] Tsai, K. T. et al. Looking into meta-atoms of plasmonic nanowire metamaterial. Nano Lett. 14, 4971–4976 (2014). https://doi.org/10.1021/nl501283c
- [4] Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Phys.-Uspekhi 10, 509–514 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003699
- [5] Smith, D. R., Padilla, W., Vier, D. C., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184
- [6] Caloz, C. & Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. The Engineering Approach. (John Wiley & Sons, 2006). https://doi.org/10.1002/0471754323
- [7] Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101(R) (2005). https://doi.org/10.1103/PhysRevB.71.201101
- [8] Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006). https://doi.org/10.1364/OE.14.008247
- [9] Smolyaninov, I. I. Hyperbolic Metamaterials. (Morgan & Claypool Publishers, 2018). https://doi.org/10.1088/978-1-6817-4565-7
- [10] Ferrari, L., Wu, C., Lepage, D., Zhang, X. & Liu, Z. Hyperbolic matermaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015). https://doi.org/10.1016/j.pquantelec.2014.10.001
- [11] Noginow, M. A. et al. Controlling spontaneous emission with metamaterials. Opt. Lett. 35, 1863–1865 (2010). https://doi.org/10.1364/OL.35.001863
- [12] Jacob, Z. et al. Engineering photonic density of states using metamaterials. Appl. Phys. B 100, 215–218 (2010). https://doi.org/10.1007/s00340-010-4096-5
- [13] Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: Radiative decay engineering with metamterials. Appl. Phys. Lett. 100, 181105 (2012). https://doi.org/10.1063/1.4710548
- [14] Gao, Y., Cortes, C. L., Molesky, S. & Jacob, Z., Brooadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012). https://doi.org/10.1063/1.4754616
- [15] Gao, Y. & Jacob, Z. Thermal hyperbolic metamaterials. Opt. Express 21, 15014–15019 (2013). https://doi.org/10.1364/OE.21.015014
- [16] Zhukovsky, S. V., Orlov, A. A., Babicheva, V. E., Lavrinenko, A. V. & Sipe, J. E. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials. Phys. Rev. A. 90, 013801 (2014). https://doi.org/10.1103/PhysRevA.90.013801
- [17] Wu, F., Chen, M. & Xiao, S. Wide-angle polarization selectivity based on anomalous defect mode in photonic crystal containing hyperbolic metamaterials. Opt. Lett. 47, 2153–2156 (2022). https://doi.org/10.1364/OL.455910
- [18] Wu, F., Wu, X., Xiao, S., Liu, G. & Li, H. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Opt. Express 29, 23976–23987 (2021). https://doi.org/10.1364/OE.434181
- [19] Korzeb, K., Gajc, M. & Pawlak, D. A. Compendium of natural hyperbolic metamaterials. Opt. Express 1, 25406–25424 (2015). https://doi.org/10.1364/OE.23.025406
- [20] Korobkin, D. et al. Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium. Opt. Express 18, 22734–22746 (2010). https://doi.org/10.1364/OE.18.022734
- [21] Pianelli, A. et al. Graphene-based hypberbolic metamaterial as a switchable reflection modulator. Opt. Express 28, 6708–6718 (2020). https://doi.org/10.1364/OE.387065
- [22] Dudek, M., Kowerdziej, R., Pianelli, A. & Parka, J. Graphene-based tunable microcavity. Sci. Rep. 11, 74 (2021). https://doi.org/10.1038/s41598-020-80022-9
- [23] Pianelli, A. et al. Active control of dielectric singularities in indium-tin-oxides hyperbolic metamaterials. Sci. Rep. 12, 16961 (2022). https://doi.org/10.1038/s41598-022-21252-x
- [24] Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
- [25] Pianelli, A. et al. 2D hybrid epsilon near-zero platform for nanophotonics. Proc. SPIE 12130, 121300J (2022). https://doi.org/10.1117/12.2624246
- [26] Xu, T. & Lezec, H. J. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat. Commun. 5, 4141 (2014). https://doi.org/10.1038/ncomms5141
- [27] Ghoshroy, A., Adams, W., Zhang, X. & Güney, D. Ö. Hyperbolic metamaterial as a tunable near-field spatial filter to implement active plasmon-injection loss compensation. Phys. Rev. Appl. 10, 024018 (2018). https://doi.org/10.1103/PhysRevApplied.10.024018
- [28] Li, Z. & Gu, Q. Topological hyperbolic metamaterials. Nanophotonics 13, 825–839 (2024). https://doi.org/10.1515/nanoph-2023-0768
- [29] Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, 1985).
Uwagi
This work was supported by the Project UGB/22-723/2024 entitled: “Materials, metamaterials and structures for photonic applications”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39cdda43-309b-4674-8365-d20135318305