
Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014 585

Article citation info:

1. Introduction

Software reliability is defined as the probability of failure–free
software operation for a specified period of time (American National
Standards Institute – ANSI). It quantifies the failures of software sys-
tems and is the key factor in software quality [19]. It is also a ma-
jor subject of Software Reliability Engineering (SRE) – a discipline
which quantitatively studies the operational behavior of software
systems with respect to the reliability requirements of the user. The
quantitative study of software systems concerning reliability involves
software reliability measurements. Measurement of software reli-
ability includes two activities, i.e., software reliability estimation and
software reliability prediction. Software reliability modelsare used to
measure a software product's reliability or to estimate the number of
latent defects when it is available to the customers. Such an estimate is

important for two reasons: 1) as an objective statement of the quality
of the product and 2) for resource planning for the software mainte-
nance phase [9].

Research has been conducted in software reliability engineering
over the past three decades and many software reliability models have
been proposed [4, 12, 19, 20, 23, 29, 30]. The pioneering attempt in
non-homogenous Poisson process (NHPP) based on software reli-
ability model was the exponential model [7]. The model describes
the failure/removal phenomenon by an exponential curve. There are
also software reliability models that describe either S-shaped curves
or a mixture of exponential and S-shaped curves (i.e., flexible). Some
of the important contributions of these type of models are due to[11,
21, 32] etc. In most of these models it is assumed that whenever an
attempt is made to remove a defect, it is removed with certainty i.e.,
a case of perfect debugging. But the debugging activity is not always

Omar Shatnawi

Measuring commercial software operational reliability:
an interdisciplinary modelling approach

Pomiar niezawodności eksploatacyjnej oprogramowania
komercyjnego: interdyscyplinarne podejście do modelowania

In the software reliability engineering (SRE) literature, few attempts have been made to model the failure phenomenon of com-
mercial software during its operational use. One of the reasons can be attributed to the inability of software engineers to measure
the growth in usage of commercial software while it is in the market. It is unlike the testing phase where resources follow a definite
pattern. In this paper, an attempt has been made to model the software reliability growth linking it to the number of users. Since the
number of instructions executed depends on the number of users. The number of users is estimated through an innovation diffusion
model of marketing. Once the estimated value is known, the rate at which instructions are executed can be found. The intensity
with which failures would be reported depends upon this value. To model the failure observation or defect removal phenomena, a
non-homogenous Poisson process (NHPP) based software reliability models developed in the literature have been employed. Soft-
ware reliability models are most often used for reliability projection when development work is complete and before the software is
shipped to customers. They can also be used to model the failure pattern or the defect arrival pattern in the field and thereby pro-
vide valuable input to maintenance planning. Numerical example with real software field reliability data is presented to illustrate
descriptive and predictive performance as well as to show practical applications of the proposed models.

Keywords:	 software reliability engineering, software reliability models, non-homogenous Poisson process,
imperfect debugging, commercial software usage, innovation diffusion.

Literatura dotycząca inżynierii niezawodności oprogramowania, podejmuje zaledwie nieliczne próby modelowania zjawiska
uszkodzenia oprogramowania komercyjnego w trakcie jego eksploatacji. Jednym z powodów może być to, iż programiści nie są w
stanie zmierzyć wzrostu użytkowania oprogramowania komercyjnego w trakcie obrotu handlowego tego typu oprogramowaniem.
Etap ten różni się bowiem od fazy testowania, gdzie zasoby funkcjonują według określonego wzorca. W niniejszej pracy podjęto
próbę stworzenia modelu wzrostu niezawodności oprogramowania łącząc to pojęcie z pojęciem liczby użytkowników, jako że
liczba wykonywanych poleceń zależy właśnie od liczby użytkowników. Liczbę użytkowników szacuje się na podstawie modelu
marketingu opartego na dyfuzji innowacji. Gdy szacowana wartość jest już znana, można określić częstość wykonywania poleceń.
Intensywność zgłaszania uszkodzeń zależy od tej wartości. Do modelowania zjawisk zaobserwowania uszkodzenia lub usunięcia
usterki zastosowano opracowane wcześniej w literaturze modele niezawodności oprogramowania oparte na niejednorodnym pro-
cesie Poissona (NHPP). Modele niezawodności oprogramowania są najczęściej wykorzystywane do projektowania niezawodno-
ści już po zakończeniu prac rozwojowych, ale zanim jeszcze oprogramowanie dotrze do klientów. Mogą być również stosowane do
modelowania wzorców uszkodzeń lub wzorców występowania usterek w trakcie eksploatacji, stanowiąc tym samym cenny wkład
do planowania czynności konserwacyjnych. Przykład liczbowy uwzględniający dane z eksploatacji rzeczywistego oprogramowa-
nia ilustruje opisowe i predykcyjne możliwości proponowanych modeli, jak również pokazuje, jak można je stosować w praktyce.

Słowa kluczowe:	 inżynieria niezawodności oprogramowania, modele niezawodności oprogramowania,
niejednorodny proces Poissona, niedoskonałe debugowanie, użytkowanie oprogramowania
komercyjnego, dyfuzja innowacji.

Shatnawi O. Measuring commercial software operational reliability: an interdisciplinary modelling approach. Eksploatacja i Niezawodnosc
– Maintenance and Reliability 2014; 16 (4): 585–594.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014586

Science and Technology

perfect because of number of factors like tester’s skill/expertise etc.
In practical software development scenario, the number of failures
observed/detected may not be necessarily same as the number of de-
fect removed/corrected. Kapur and Garg [11] have discussed in their
defect removal phenomenon model that as testing grows and testing
and debugging team gains experience, additional numbers of defects
are removed without them causing any failure. The testing and debug-
ging, however, may not be able to remove/correct defect perfectly on
observation/detection of a failure and the original defect may remain
leading to a phenomenon known as imperfect debugging, or replaced
by another defect resulting in defect generation. In case of imperfect
debugging the defect-content of the software is not changed, but be-
cause of incomplete understanding of the software, the original de-
tected defect is not removed perfectly. But in case of defect genera-
tion, the total defect-content increases as the testing and debugging
progresses because new defects are introduced in the system while
removing the old original defects [5, 14, 15, 26].Models due to [22,
33] are defect generation models applied on the exponential model
[7] and have been also named as imperfect debugging models. Kapur
et al. [12] introduced the imperfect defect debugging in exponential
model [7]. They assumed that the defect detection rate per remain-
ing defects is reduced due to imperfect defect debugging. Thus the
number of failures observed/detected by time infinity is more than the
initial defect-content. Although these two models describe the imper-
fect debugging phenomenon yet the software reliability growth curve
of these models is always exponential. Moreover, they assume that the
probability of imperfect debugging is independent of the testing time.
Thus, they ignore the role of the learning process during the testing
phase by not accounting for the experience gained with the progress
of software testing. Zhang et al. [34] proposed a testing efficiency
model which includes both imperfect defect debugging and defect
generation, modeling it on the number of failures experienced, how-
ever both imperfect debugging and defect generation are actually seen
during defect removal. Recently, Kapur et al. [15] proposed a flexible
software reliability model with imperfect defect debugging and defect
generation using a logistic function for defect detection rate, which
reflects the efficiency of the testing and debugging team.

Very few attempts have been made to model the failure phenom-
enon of software product during its operational use. One of the rea-
sons for this can be attributed to the inability of software engineers to
measure the growth in usage of software while it is in the market. It is
unlike the testing phase where testing-effort follows a definite pattern.
Kenney [17] developed a calendar-time model for a multi-release
product using Trachtenberg’s [28] general theory of software reliabil-
ity. He has assumed a power function to represent the usage rate of the
software. Though he argues that the rate at which the software product
is used is dependent upon the number of its users, the model proposed
by him fails to capture the growth in number of users of the software.
To capture the growth in number of end-users of the software, Kapur
et al. [13] incorporatesa model from marketing to account for usage in
the operational phase as for the commercially used software, number
of instructions executed depends on the number of users.

The rest of this paper is structured as follows. Section 2 provides
an interdisciplinary modeling approach that combines the subject
software reliability engineering and marketing. Sections 3 and 4pre-
sentparameter estimation techniquesand filed software reliability data.
In Sections 5 and 6, data analyses techniques,and model validation
and comparison criteria are discussed. Filed software reliability data
analyses and model comparisons discussed in Section 7 and Section 8
concludes the paper with some general remarks.

2. Interdisciplinary modelling approach

Study of a system in isolation can be easier but may not provide
the optimal results. On the other hand, the theory of a single discipline
may prove to be inadequate in explaining the dynamic interactions
with other systems. Hence there is a need for interdisciplinary ap-
proach. The distinguishing feature of modern science has been the
increasing interweaving of formally separated disciplines. Mathemat-
ical modeling is a collection of tools that cannot be put under one
single discipline. They have been facilitating interdisciplinary stud-
ies of many complex situations. Mathematical modeling in marketing
started in 1950s. They have been applied to measure the effectiveness
of promotional campaign, brand switching behaviour of consumers,
success of a new product, market risk analysis, etc. Mathematical
models have been proposed for testing-effort [1, 18, 25, 31] but they
are not suitable for measuring usage of software in the market. The
intensity with which failures would manifest during the operational
use is dependent upon the number of times the software is used and
not much has been done in the literature for the situation [3]. Many
interdisciplinary studies as production management and financial
management have also been carried out. But few attempts have been
made at including reliability models, though quality is a very impor-
tant attribute of a successful product.In the software reliability engi-
neering literature, few attempts have been made to include marketing
parameters for evaluating the operational reliability. One attempt has
used a modified version of innovation diffusion model [2] to estimate
the number of licensed users as well as users of pirated copies of the
software [6].

For a reliable estimate of the growth with time in number of us-
ers who use a particular software release product during operational
phase, we have employed a mathematical model developed in the
discipline of marketing management [2]. The employed model can
be used to account for usage in the operational phase as for the com-
mercially used software, number of instructions executed depends on
the number of users. The usage function so defined can also take care
of increasing, linearly decreasing trends as a function of time, which
implies slow start but gain in growth rate. A big beginning and tail-
ing off in the usage growth.The usage function is estimated through
innovation diffusion model of marketing. Such an interdisciplinary
modeling approach that combines the subjectssoftware engineering
and marketing has been attempted for the first time [16].

Software is subject to failures during execution caused by 1.	 de-
fects remaining in the software
Software failure occurrence or defect removal phenomena fol-2.	
lows an NHPP with .
Software usage is used as a basis for failure rate.3.	
The number of failures experienced during operation is de-4.	
pendent upon the number of instructions executed.
The number of instructions executed is a function of the 5.	
number of users.
The number of users is a function of time.6.	

The following notations are used for the mathematical formula-
tion purpose:
m	 Expected number of failures experienced in the time interval

(0, t]
e	 Expected number of instructions executed on the software in

(0, t]
W	 Expected number of software users in (0, t] and ∂W/∂t = wt
a	 Expected number of defects lying dormant in software
b	 Proportionality constant denotes the rate at which remaining de-

fects cause failures
p	 Probability of defect removal on a failure
α	 Rate at which the defect may be introduced during the debug-

ging process
σ	 Rate at which instructions are executed

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014 587

Science and Technology

β	 Constant representing learning parameter in logistic function
τ	 Expected number of potential users in the population
µ	 Coefficient of external (mass media) influence (i.e., innovation

rate)
η	 Coefficient of internal (inter-personal) influence (i.e., imitation

rate)
k,γ	 Constants.

2.1.	 Development

We model the number of reported failures time t as a pure birth
counting process (Nt)t≥0, or more specifically, a NHPP. A pure birth
counting process (Nt)t≥0 is a NHPP with intensity function λt, for all
t≥0, if it satisfies the following properties:

N1)	 t=0 = 0
(2)	 Nt)t≥0 has independent increments. This implies that for any
ti>tj>tk>tl the random variables N Nt tj i

− and N Nt tl k
− are

independent.
The random variable 3)	 N Nt tj i

− has a Poisson distribution with

mean m mt tj i
− , for all 0≤ti<tj. This implies that:

	  N N k
m m

k
et t

t t
k

m m

j i
j i t j ti− =



 =

−()
⋅

− −()
!

, for all k=0,1,…, (1)

where m dt

t

x x= ⋅∫
0
λ is the mean value function of the NHPP [Nt,t≥0].

The quantity mt describes the expected number of failures or
defect removal up to time t. Because of the underlying assumptions
about the failures and number of defects in the software, we assume
mt to be a bounded, strictly increasing function satisfying the bound-
ary conditions mt=0=0.

Using the above assumptions the failure occurrence or the defect
removal phenomena can be described with respect to time as fol-
lows:

	 λt
m
t

m
e

e
W

W
t

=
∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

	 (2)

Each component on the right hand side of the differential Eq. (2)
is individually discussed below.

2.1.1.	 Modeling the number of failures reported per instructions

The first component of Eq. (2) relates the number of failures expe-
rienced during operation with the number of instructions executed. In
other words, during testing instructions are executed on the software
and the output is matched with the expected results. If there are any
discrepancy a failure is said to have occurred. Effort is made to identi-
fy and later remove the cause of the failure. The earlier models due to
Kapur et al. [13] and Shatnawi [27] have the employed flexible model
[11] and the exponential model [7] respectively, for the purpose. How-
ever, in the exponential model [7] defects are removed immediately
after a software failure is observed, i.e. the time to remove a defect is
negligible. But in reality, each observed failure is reported, diagnosed,
corrected, and then verified. The time from observation to removal
should not be neglected in a practical software testing process. Be-
sides, in the flexible model [11] defects are removed with certainty
and no new defect introduced during testing and debugging process.
In reality this may not be always true. The corrections may themselves
introduce new faults or they may inadvertently create conditions, not
previously experienced, that enable other faults to cause failures. This
results in situations where the actual fault removals are less than the

removal attempts. To address these issues the models due to Yamada
et al. [32] and Kapur et al. [15] are selected accordingly.
The first selected software reliability model is the delayed S-shaped
model [32] that describes the testing and debugging process as a
two-stage process—failure observation and the corresponding defect
removal phenomenon. This model can be derived alternatively in
one stage as follows:

	 ∂
∂

= −()⋅
m
e

b a mw
w w ,	 (3)

where b b W
b Ww

t

t
=

+ ⋅
⋅2

1
.

The second selected software reliability model is the testing ef-
ficiency model [15] that integrates the effect of imperfect defect de-
bugging and defect generation using a logistic function for the defect
detection rate, which reflects the efficiency of the testing and removal
team. In this model, the failure intensity satisfies the following dif-
ferential equation:

	 ∂
∂

= ⋅ ⋅ −()m
e

p bw aw mw
w ,	 (4)

where b b
w b Wt
=

+ ⋅ − ⋅1 β e
 and a a mw w= + ⋅α .

2.1.2.	 Modeling the number of instructions executed per users

The second component of Eq. (2) relates the number of instructions
executed with the testing effort or the number of users of the soft-
ware. For the sake of simplicity we assume it to be constant:

	 ∂
∂

=
e

W
σ ,	 (5)

2.1.3.	 Modeling the number of users per unit time

The third component of Eq. (2) relates the growth in number of us-
ers with respect to time. Kenny [17] has used the power function to
describe the growth in user population who use a particular software
release [16]:

	 W t
kt

k
=

+

+1

1
,	 (6)

Wt here is the number of users of the software in the operational
phase at time t.

The function can correctly describe the users growth in terms of
a slow start but gain in growth rate, a constant addition of users, or a
big beginning and tail off in the usage rate. In the marketing literature,
power function is rarely used for the purpose as described above. One
of the reasons can be that the parameters of the function are not ame-
nable to interpretations. In models proposed by [13, 27], the growth in
number of users (or adopters) with respect to time using is described
by the Bass [2] new product diffusion model. In marketing, the diffu-
sion of innovations occurs with every launch of a new type of prod-
uct, and is widely thought to be influenced by both inter-personal and
mass media communication. Bass labelled those who adopt due to
external influences innovators, and those who adopt due to internal
influences imitators.

Mathematically the relationship is expressed as follows:

	
∂
∂

= ⋅ −() + ⋅ ⋅ −()W
t

W W
a

Wt
t

t
tµ τ η τ ,	 (7)

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014588

Science and Technology

Solving Eq. (7) with the boundary condition Wt=0=0, we have:

	 Wt

t

t
= ⋅

−

+ ⋅

− +()⋅

− +()⋅
τ

η
µ

µ η

µ η

1

1

e

e
.	 (8)

2.2.	 Formulation

Substituting Eq. (3) and Eq. (5) in Eq. (2), we have:

	 ∂
∂

= ⋅
⋅

+ ⋅
⋅ −() ⋅ ⋅

∂
∂

m
t

p b W
b W

a m W
t

t

t

2

1
σ ,	 (9)

Solving Eq. (9) under boundary condition mt=0=0, we have the
first proposed model as:

	 m a b W et t
b Wt= ⋅ − + ⋅() ⋅()− ⋅ ⋅1 1 γ γ ,	 (10)

here p∙σ=γ.
The failure intensity is given as:

	 λ
γ γ γ

t
t

t
t

b Wm
t

a b W
b W

b W e t=
∂
∂

=
⋅ ⋅ ⋅
+ ⋅

⋅ + ⋅() ⋅()− ⋅ ⋅
2

1
1 ,	 (11)

Substituting Eq. (4) and Eq. (5) in Eq. (2), we have:

	
∂
∂

= ⋅
+ ⋅

⋅ − −() ⋅() ⋅ ⋅
∂
∂− ⋅

m
t

p b a m W
tb Wt1

1
β

α σ
e

,	 (12)

Solving Eq. (12) under boundary condition mt=0=0, we have the
second proposed model as:

	 m a e
e

t

b W

b W

t

t
=

−
⋅ −

+() ⋅
+ ⋅





























− ⋅

− ⋅

⋅ −()

1
1

1

1

1

α
β

β

γ α

,	 (13)

here p∙σ=γ.
The failure intensity is given as:

	 λ
γ

β

β

β

γ

t b W

b W

b W
m
t

a b
e

e
et

t

t
=
∂
∂

=
⋅ ⋅

+ ⋅
⋅

+() ⋅
+ ⋅











− ⋅

− ⋅

− ⋅

⋅ −

1

1

1

1 αα()
,	 (14)

It should be pointed out here that the second proposed model given
in Eq. (13) is more general than that of the first proposed model given
in Eq. (10) since it includes the effect of defect generation, imperfect
defect debugging, and has the models due to [13, 27]as special cases.

3. Parameter estimation techniques

Parameters estimation is of primary concern in software reliabil-
ity measurement. Software filed reliability data can be collected dur-
ing operational from the actual operational sites where software is
used by its intended users during field tests in the form of failures
xi (− <x1<x2<…<xk) reported by sites Wi (W1<W2<W3<…<Wk) in the
time interval (0,ti] where i=1,2,…,k. Data usage collected during op-
erational use is estimated by the method of least square as follow:

	
minimize W W

subject to W W
ii

k

k k

−()
=

=∑ 2
1 ,

,

ˆ

ˆ
	 (15)

where Ŵk=Wk implies that the estimated value is equal to the actual
value.

Using these estimated parameters values, we estimate the param-
eters in the proposed models given in Eq. (10) and Eq. (13)and the
models under comparison given Table 1 by the method of maximum
likelihood estimation (MLE). The Likelihood function L for the un-
known parameters with the mean value function mt takes on the form:

	L parameters W x
m m

x x
ei i

t t
x x

i i

m mi i
i i

ti t| ,
!

()() =
−()

−()
−

−

−

− −
−

1

1

1

ii
i
k −()
=∏ 1
1

, (16)

Taking natural logarithm of (16) we get:

ln ln lnL x x m m m m x xi ii
k

t t t t i ii
k

i i i i
= −() −() − −() −()−= − − −=∑ 11 1 1 11∑∑ (17)

The MLE of the unknown parameters can be obtained by maxi-
mizing the likelihood function subject to the parameters constraints.

For faster and accurate calculations, the statistical package for
social sciences (SPSS) based on the nonlinear regression technique
has been utilized for the estimation of the parameters of the proposed
models and the models under comparison. Non-linear regression is a
technique of finding a nonlinear model of the relationship between
the dependent variable and a set of independent variables. Unlike
traditional linear regression, which is restricted to estimating linear
models, non-linear regression can estimate models with arbitrary re-
lationships between independent and dependent variables.

4. Filed software reliability data

An actual field data from a larger release of a telecommunica-
tions switch software given in Table 2. This data is available in
the form (ti,wi,xi)(i=1,2,3,…,140)where w_iis the number of sites
reporting failures xi per time ti (t1<t_2<t3<…<t140), t140=93.5,
W wii140 1

140 8109= ==∑ , and x140=100. Note that the data has been
normalized to protect proprietary information. The main effect of nor-
malization on the analysis is one of scaling. Therefore, the analysis of
the non-normalized data would be essentially the same [8] and further
studied in [27]. Therefore, the data set allows direct comparison with
the work of others.

Table 1.	 Models under comparison.

Reference Software Reliability Model

Model due to [27] a e b Wt⋅ −





− ⋅ ⋅1 σ

Model due to [13] a
e

e

b W

b W

t

t
⋅ −

+() ⋅
+ ⋅





























− ⋅

− ⋅1
1

1

β

β

σ

Proposed given in
Eq. (10)

a b W et
b Wt⋅ − + ⋅() ⋅





− ⋅ ⋅1 1 γ γ

Proposed given in
Eq. (13)

a e
e

b W

b W

t

t1
1

1

1

1

−
⋅ −

+() ⋅
+ ⋅





























− ⋅

− ⋅

⋅ −()

α
β

β

γ α

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014 589

Science and Technology

5. Data analysis techniques

Before applying any software reliability model to a set of failure
data it is advisable to determine whether the failure data does, in fact,
exhibit reliability growth. If a set of failure data does not exhibit in-
creasing reliability as testing progresses, there is no point in attempt-
ing to estimate and predict the system’s reliability. Since the proposed
models are failure count models, the test may only be applied to data
in which the test intervals are of equal length. Therefore, we divided

the time interval (0,t] into k units of time of equal length. The two
trend tests that are commonly carried out are [10]:

Arithmetic mean test•	 . This test consists of computing the arith-
metic mean τk of the observed times ni, i=1,2,…,k.

					 τk ii
k

k
n= =∑1

1 , (18)

An increasing sequence of τ_k indicates reliability growth and
a decreasing sequence indicates reliability decay.

Table 2.	 Field data from a larger release of a telecommunications switch software. Data is calendar-time, %Cum SW Failures is the percentage of the total number
of software failure experienced in the calendar interval reported in the table, %Cum Usage Time is the percentage of the total in service time accumulated
over the calendar interval reported, and %Sites is the percentage of sites that have this version of the software release loaded on a given date. Note that the
data has been normalized to protect proprietary information [8].

Date
%cum

SW
Failures

%cum
Usage

Failures
%Site Date

%cum
SW

Failures

%cum
Usage

Failures
%Site Date

%cum
SW

Failures

%cum
Usage

Failures
%Site Date

%cum
SW

Failures

%cum
Usage

Failures
%Site

1 0 0.0 2 36 35 11.4 73 71 79 49.0 98 106 96 78.8 54

2 1 0.1 2 37 38 12.2 75 72 79 50.2 97 107 96 79.4 53

3 1 0.1 2 38 39 13.1 76 73 80 51.3 95 108 97 80.0 52

4 1 0.1 2 39 40 14.0 78 74 81 52.4 95 109 97 80.6 50

5 1 0.1 2 40 42 14.9 81 75 82 53.4 93 110 97 81.2 48

6 1 0.2 3 41 44 15.8 83 76 83 54.5 91 111 97 81.7 48

7 2 0.2 3 42 45 16.8 85 77 83 55.5 90 112 98 82.3 47

8 2 0.3 4 43 47 17.8 86 78 84 56.6 89 113 98 82.8 46

9 2 0.3 5 44 49 18.8 88 79 85 57.6 88 114 98 83.3 45

10 2 0.4 5 45 50 19.8 90 80 85 58.6 85 115 98 83.9 45

11 3 0.4 6 46 52 20.9 92 81 86 59.6 82 116 98 84.4 45

12 4 0.5 7 47 54 21.9 94 82 86 60.5 80 117 98 84.9 42

13 4 0.6 7 48 55 23.0 95 83 87 61.4 78 118 98 85.3 40

14 5 0.7 9 49 56 24.1 96 84 87 62.3 78 119 98 85.8 39

15 7 0.8 13 50 57 25.2 96 85 88 63.2 76 120 98 86.3 38

16 7 1.0 16 51 58 26.3 95 86 88 64.1 75 121 98 86.6 38

17 8 1.1 16 52 59 27.4 95 87 89 64.9 74 122 98 87.1 37

18 9 1.5 17 53 60 28.5 95 88 89 65.8 72 123 98 87.5 37

19 10 1.7 91 54 60 29.6 96 89 90 66.6 71 124 98 87.9 36

20 10 2.0 22 55 63 30.7 98 90 90 67.4 71 125 98 88.3 36

21 11 2.2 25 56 64 31.9 98 91 90 68.2 69 126 98 88.7 35

22 13 2.6 29 57 65 33.0 99 92 91 69.0 68 127 99 89.1 34

23 14 2.9 33 58 66 34.1 99 93 91 69.8 67 128 99 89.5 34

24 16 3.3 37 59 67 35.3 99 94 92 70.5 65 129 99 89.9 33

25 17 3.8 41 60 69 36.4 99 95 92 71.3 64 130 100 90.3 32

26 18 4.3 46 61 70 37.6 99 96 92 72.0 63 131 100 90.7 31

27 20 4.8 49 62 70 38.7 99 97 92 72.7 62 132 100 91.0 30

28 22 5.4 54 63 72 39.9 100 98 93 73.4 61 133 100 91.4 30

29 25 6.1 56 64 73 41.0 99 99 93 74.1 61 134 100 91.7 29

30 26 6.7 60 65 74 42.1 99 100 93 74.8 60 135 100 92.0 28

31 28 7.4 63 66 75 43.3 99 101 94 75.5 59 136 100 92.3 27

32 30 8.2 65 67 76 44.4 99 102 94 76.2 59 137 100 92.7 27

33 32 8.9 67 68 77 45.6 100 103 95 76.9 58 138 100 93.0 25

34 33 9.7 69 69 77 46.7 100 104 95 77.5 57 139 100 93.2 25

35 35 10.5 70 70 77 47.9 99 105 95 78.2 56 140 100 93.5 24

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014590

Science and Technology

Laplace Test•	 . This test is superior from an optimality point of
view and is recommended for use when the NHPP assumption
is made. In terms of n_i, the number of failures during unit of
time i, the expression of the Laplace factor is:	

				 u
i n k n

k n
k

i
k

i i
k

i

i
k

i

=
−() −

−

−

= =

=

∑ ∑

∑

1 1

2

1

1 1
2

1
2

,   (19)

In practice, in the context of reliability growth, negative values
indicate a decreasing failure intensity and thus a reliability increase,
positive values suggest an increasing failure intensity and thus a reli-
ability decrease, and values oscillating between −2 and +2 indicate
stable reliability.

In other words, in order to determine whether the software under-
went a reliability growth or not, we apply both the arithmetic mean
and Laplace trend test to the failure data.

6. Model validation and comparison criteria

The performance of a software reliability model judged by its
ability to fit the past software failure data (i.e., goodness of fit criteria)
and to predict satisfactorily the future behavior from present and past
data behavior (i.e., predictive validity criterion).

We evaluate the performance of the models under comparison
given in Table 1 using MSE, Bias, Variation, and RMSPE metrics.
The smaller the metric value the better [15, 24].

The mean square fitting error (MSE)•	 . The models under com-
parison are used to simulate the failure data, the difference be-
tween the expected values, m̂ti and the observed data xi is

measured by MSE as follows:

	 MSE
k

xmt ii
k

i
= −()=∑1 2

1 ̂ 	 (20)

	 where k is the number of observations.
Bias•	 . The difference between the observation and prediction
of number of failures at any instant of time i is known as PEi
(prediction error). The average of PEs is known as bias:

	 Bias
k

PEii
k= =∑1

1 	 (21)

	 where PEi=Actual(observed)i−Predicted(estimated)i,
Variation•	 . The standard deviation of prediction error is known
as variation:

	
Variation

k
PE Biasii

k=
−

−()=∑1
1

2
1

	 (22)

Root Mean Square Prediction Error •	 (RMSPE). It is a measure
of closeness with which a model predicts the observation:

	
RMSPE Bias Variation= +()2 2

Predictive validity is defined as the capability of the software reli-
ability model to determine the future failure behavior from present
and past failure behaviour. This capability is significant only when
failure behavior is changing [20].

Assume that we have observed xk failures by the end of operating
time tk. We use the failure data up to time te (≤tk) to estimate the pa-
rameters of m̂. Substituting the estimates of the parameters in the
mean value function yields the estimate of the number of failures m̂ti
by time tk. The estimate is compared with the actually observed
number xk. This procedure is repeated for various values of te. We can
visually check the predictive validity by plotting the relative error
against the normalized time:

	
Relative Error

x
x

Normalized Time t
t

mt k

k

e

k

k=
−

=, and
̂

 (24)

The error will approach zero as te approaches tk. If the points are
positive (negative), the model tends to overestimate (underestimate)
the future failure phenomenon. Numbers closer to zero imply more
accurate prediction. The relative error is said to be acceptable if it is
within ±10 percent [12].

7. Filed softwarereliability data analyses and model
comparisons

7.1.	 Trend analysis

Figures 1 and 2 trace the arithmetic mean and Laplace trend tests
respectively. Both trend tests indicate reliability decay which is ex-
pected and considered normal at the start of a new activity, such as a
new life cycle phase, changing test sets within the same phase, adding
new users, activating the system with a different user profile, or may
also result from regression defects. Since the decay last for short pe-
riod we should not pay attention to it. The reliability decay followed
by reliability growth is usually welcome because it indicates that,
after removal of the first defect, the corresponding activity reveals
fewer and fewer defects [10]. Since the failure data exhibits increas-
ing reliability as testing progresses, there is a point in attempting to
estimate and predict the system’s reliability. As both trend tests show
reliability decay followed by reliability growth, which suggest the use
of S-shaped models. Therefore, the proposed models with S-shaped
mean value functions can be applied to failure data displaying a trend
that behaves according to their assumptions.

Fig. 1. Arithmetic mean trend test

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014 591

Science and Technology

7.2.	 Goodness of fit criteria analysis

The resultant parameters estimation and the performance of the
usage functions under comparison are tabulated in Table 3. From this
table, we can see that the innovation diffusion model [2] has lower
MSE, bias, variation, and RMSPE metric values. Therefore, the in-
novation diffusion model is good enough to give a more accurate de-
scription of software usage in the operational phase.

The fitting of the usage functions under comparison to the actual
cumulative and noncumulative usage are graphically illustrated in Fig-
ures 3 and 4 respectively. The power function [17] shows a poor fitting
while innovation diffusion model [2] fits the data excellently as seen in
Figure 3. It is clearly seen from Figure 4 that the number of sites/users
who adopted this particular software product is increasing at a rapid rate
and there is a stability after which it decreases in the presence of com-
petitors or other reasons (e.g., next release becomes available). From

these figures, we can observe that the
innovation diffusion model [2] provides
more accurate description of usage than
the power function [17].

The parameter estimation and com-
parison criteria results of the models
under comparison can be viewed in
Table 4. The parameters of the innova-
tion diffusion [2] were estimated by the
least squares estimation method and
given in Table 3. Using these estimated

values, the MLE method is then applied to estimate the remaining pa-
rameters of the models under comparison. If we look at the estimation
results, we notice that the value of parameter ‘β’, i.e., is greater than
zero, which implies the S-shaped nature defined by the fault detection
mean value function for this model. Besides, the value of parameter
‘α’, is zero, which implies the debugging process is perfect. It is worth
noting that the second proposed model given in Eq. (13) reduces to
the model [13] when applied due to its built-in flexibility. In addition,
we can see that both of the proposed models provide improved results
because of lower MSE, bias, variation, and RMSPE metric values.

The fitting of the models under comparison to the actual filed
data are graphically illustratedin Figures 5 and 6. From Figure 5 we
notice the behavior of failure data and observe that it is S-shaped in
nature. This further justified by the use of the proposed models to
detect the defects in the software. It is clearly seen from Figure 6 that
the evolution of the failure intensity is not monotonous decreasing but
S-shaped, i.e., first increasing-then-decreasing. Failure intensity has
been proven to be very useful for allocating resources and determin-
ing when to stop testing in commercial systems. The distribution of
failure occurrence during operation as depicted in Figure 6 shows the
number of failure occurrence during an interval has a higher rate in
the initial stages, reaches a maximum number per interval and then

Fig. 2. Laplace trend test

Fig. 3. Cumulative usage curves

Fig. 4. Non-cumulative usage curves

Table 3.	 Parameter estimation and comparison criteria metrics results

Usage Functions
Under Comparison

Parameter Estimation Comparison Criteria

κ τ μ η MSE Bias Variation RMSPE

Power Function [17] 1.02 — — — 1168418 −455 984 1084

Innovation Diffusion [2] — 8134.5 .00163 .0475 18422 34 132 136

— the parameter is not part of the corresponding function

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014592

Science and Technology

exponentially reduces over time toward zero. In other words, we may
conclude that as the cumulative failure count increases, the failure
intensity decreases.

7.3. Predictive Validity Analysis

The filed data is truncated into different proportions and used
to estimate the parameters of the proposed models. For each trunca-
tion, one relative defect is obtained. Figure 7 graphically illustrates

Fig. 8. Retrodictive and predictive abilityFig. 7. Predictive validity

Fig. 5. Cumulative failure removal curves Fig. 6. Non-Cumulative failure removal curves

Table 4.	 Parameter estimation and goodness of fit metric results

Models under
Comparison

Parameters Estimation Comparison Criteria

a b γ α β MSE Bias Variation RMSPE

Model due to [27] 105.37 .005617 .061249 — — 3.85 .287 1.95 1.97

Model due to [13] 103.65 .020765 .017874 — 3.969 3.06 −.007 1.76 1.76

Proposed in Eq.(10) 103.31 .035260 .010778 — — 3.42 −.004 1.85 1.85

Proposed in Eq.(13) 103.65 .020765 .017874 0.0 3.969 3.06 −.007 1.76 1.76

— indicates the parameter is not part of the corresponding model

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014 593

Science and Technology

References

1. Ahmad N, Khan MG, Rafi LS. A study of testing-effort dependent inflection S-shaped software reliability growth models with imperfect
debugging. International Journal of Quality & Reliability Management 2010; 27: 89-110.

2. Bass F. A new product growth model for consumer durables. Journal Marketing 1969; 15: 215-227.
3. Bardhan AK. Modelling in Software Reliability and its Interdisciplinary Nature. PhD thesis, New Delhi: University of Delhi, 2002.
4. Chiu K-C, Huang Y-S, Lee, T-Z. A study of Software reliability growth from the perspective of learning effects. Reliability Engineering and

Systems Safety 2008; 93: 1410-1421.
5. Edris K, Shatnawi O. The Pham Nordmann Zhang (PNZ) software reliability model revisited. Proc. of the Tenth IASTED International

Conference on Software Engineering, Innsbruck, Austria,15-17 February2011: 205-212.
6. Givon M, Mahajan V, Muller E. Software piracy: estimation of lost sales and the impact on software diffusion. Journal Marketing 1995; 59:

29-37.
7. Goel AL, Okumoto K Time dependent error detection rate model forsoftware reliability and other performance measures. IEEE Trans.

Reliability 1979: 28 206-211.
8. Jones WD, Vouk MA. Field data analysis. in: Handbook of Software Reliability Engineering, Lyu M. (ed.), McGraw Hill, 1996.
9. Kan SH. Metrics and Models in Software Quality Engineering, Second Edition. USA: Addison-Wesley Professional, 2002.
10. Kanoun K, Kaaniche M, Laprie J-C. Qualitative and quantitative reliability assessment. IEEE Software 1997; 14: 77-87.
11. Kapur PK, Garg RB. A software reliability growth model for an error removal phenomenon. Software Engineering Journal 1992; 7: 291-294.
12. Kapur PK, Garg RB, Kumar S. Contributions to Hardware and SoftwareReliability.Singapore: World Scientific, 1999.

Acknowledgment:
Much of the research that has found its way into this manuscript was carried out during my sabbatical leave of 2013-2014. I am truly grateful to

Al al-Bayt University for its support of my work and to the reviewers for their constructive comments.

the result of the predictive validity. It is observed that the predictive
validity of the model varies from one truncation to another. The error
relative of the proposed models underestimates the failure observation
process. Figure 8 graphically illustrates the retrodictive and predic-
tive ability of the proposed models. The data is truncated at te (50%
approx.) to estimate the proposed model parameters. The proposed
models are then used to estimate the whole data. The points before te
(marked by a dotted arrow) demonstrate the retrodictive ability while
the points afterte demonstrate the predictive ability of the proposed
models. It is clearly seen that 50% of the normalized time is sufficient
to predict the future behavior of the failure process reasonably, which
enable proper planning and of the maintenance effort. This, in turn,
minimizes the maintenance cost without decreasing customer satis-
faction.

8. Concluding remarks

Software reliability model is a mathematical expression that spec-
ifies the general form of the software failure process as a function of
factors such as fault introduction, fault removal, and the operational
environment. NHPP based Software reliability models have been
quite successful tools in practical software reliability engineering.
These models consider the debugging process as a counting process
characterized by its mean value functions. Software reliability, can
be estimated once the mean value function is determined. Model pa-
rameters are usually estimated using either the maximum likelihood
method or least squared estimate. They have been widely used to es-
timate the reliability of software during testing. Many authors have
even tried to extend them to represent the failure phenomenon during
the operational phase, typically used in release time problem of soft-
ware. But this approach is not correct when usage of software is dif-
ferent from that during testing, which is actually the case for most of
the commercial software. Commercial software brings many benefits
to society, and plays a vital role in the development and maintenance
of a diverse and vibrant information and communication technology
sector. A commercial software developer endeavors to make its soft-
ware product popular in the market by selling more and more copies
of its product. Apart from satisfying customers by meeting all their
requirements and attaching additional features, the developer at the

same time makes constant efforts to build the software defect free.
For measuring the operational reliability of a commercial software
product, the main issue is the availability of software filed reliability
data that is needed for determining reliability. Software development
companies like Microsoft employees customer experience improve-
ment program (CEIP) technology, to record both failure data and us-
age data. Since CEIP is available to a user by subscription only, the
total population size of the observed group is known.

In this paper, an attempt has been made to model the software reli-
ability growth linking it to the number of users who use a particular
software release. Because the number of instructions executed depends
on the number of users. The number of users is estimated through an
innovation diffusion model of marketing. Once the estimated value
is known, the rate at which instructions are executed can be found.
The intensity with which failures would be reported depends upon
this value. The software reliability models developed in the literature
can now be used to model the fault exposure phenomenon. Following
this the proposed models can help software companies like Microsoft
to improve the quality, reliability and performance of its commercial
software products. The proposed models have been evaluated by how
good they can fit the filed data and how predictive they are. The re-
sults obtained from the proposed models discussed in this paper are
quite encouraging, as can be viewed through the numerical illustra-
tions shown in the tables and figures obtained after we performed the
estimation on real filed reliability data sets. The numerical example
concludes that the consideration of the effect of learning with two
types of imperfect debugging in software reliability growth modeling
assumptions can improve the descriptive performance of the models
and the predictive performance as well.

There is a rise of interest in increasing interdisciplinary studies. It
is essential to be able to predict the future scenario more accurately.
We feel this study is an important step in that direction. The emphasis
of the study is to show how one field of activity can enrich the other
and vice-versa. Further studies are needed to examine the perform-
ance of the proposed models more by using many other reported filed
data. Finally, we believe that the approach followed in this paper will
help to a great extent and provides a large scope for further extension
and generalization.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 4, 2014594

Science and Technology

Omar Shatnawi
Department of Computer Science
Al al-Bayt University
Mafraq 25113, Jordan
E-mail: dromali@lycos.com

13. Kapur PK, Jha PC, Goswami DN, Shatnawi O, Bardhan AK. General framework for modeling software reliability growth during testing and
operational use. Recent Developments in Quality, Reliability and Information Technology 2003:187-197

14. Kapur PK, Singh O, Shatnawi O, Gupta A. A discrete NHPP model for software reliability growth with imperfect fault debugging and fault
generation. International Journal of Performability Engineering 2006; 2: 351-368.

15. Kapur PK, Pham H, Anand S, Yadav K. A unified approach for developing software reliability growth models in the presence of imperfect
debugging and error generation. IEEE Transactions on Reliability 2011; 60: 331-340.

16. Kapur PK, Singh O, Mittal R. Software reliability growth and innovation diffusion models: an interface. International Journal of Reliability,
Quality and Safety Engineering 2004; 11: 339-364.

17. Kenny GQ. Estimating defects in commercial software during operational use. IEEE Transactions on Reliability 1993; 42: 107-115.
18. Kuo SY, Huan CY, Lyu MR. Framework for modelling software reliability using various testing-effort and fault-detection rates. IEEE

Transactions on Reliability 2011; 50: 310-320.
19. Lyu M. (Ed.). Handbook of Software Reliability Engineering, New York: McGraw-Hill. 1996
20. Musa JD, Iannino A, Okumoto K. Software Reliability: Measurement Prediction Application. McGraw-Hill, 1987.
21. Ohba M. Software reliability analysis models. IBM Journal of Research and Development 1984; 28: 428-443.
22. Ohba M, Chou XM. Does imperfect debugging effect software reliability growth. Proceedings of 11th International Conference of Software

Engineering, Pittsburgh, PA, USA, 15-18 May 1989: 237-244.
23. Pham H. Software reliability. London: Springer, 2000.
24. Pillai K, Nair VSS. A model for software development effort and cost estimation. IEEE Transactions on Software Engineering 1997; 23: 485–497.
25. Shatnawi O. Testing-effort dependent software reliability model for distributed systems. International Journal of Distributed Systems and

Technologies 2013; 4: 1-14.
26. Shatnawi O. Discrete time NHPP models for software reliability growth phenomenon. International Arab Journal of Information Technology

2009; 6: 124-131.
27. Shatnawi O. Measuring software-operational reliability: an interdisciplinary modelling approa ch.Proc. of the IFIP 18th World Computer

Congress - Student Forum, Toulouse, France, 22-27 August 2004: 165-176.
28. Trachtenberg M. A general theory of software reliability modeling. IEEE Transactions on Reliability 1990; 39: 92-96.
29. Wang S, Wu Y, Lu M, Li H. Discrete nonhomogeneous Poisson process software reliability growth Models based on test coverage. Quality

Reliability Engineering International 2013; 29: 103–112.
30. Xie M. Software reliability modelling. Singapore: World Scientific, 1991
31. Yamada S, Ohtera H, Narihisa H. Software reliability growth models with testing-effort. IEEE Transactions on Reliability 1986; R-35, 19-23.
32. Yamada S, Ohba M, Osaki S. S-shaped reliability growth modelling for software error detection. IEEE Transactions on Reliability 1983; 32:

475-484.
33. Yamada S, Tokuno K, Osaki S. Imperfect debugging models with fault introduction rate for software reliability assessment. Int'l Journal of

System Science 1992; 23: 2253-64.
34. Zhang X, Teng X, Pham H. Considering fault removal efficiency in software reliability assessment. IEEE Transactions on Systems, Man and

Cybernetics 2003; 33: 114-120.

