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1. Introduction

Software reliability is defined as the probability of failure–free 
software operation for a specified period of time (American National 
Standards Institute – ANSI). It quantifies the failures of software sys-
tems and is the key factor in software quality [19]. It is also a ma-
jor subject of Software Reliability Engineering (SRE) – a discipline 
which quantitatively studies the operational behavior of software 
systems with respect to the reliability requirements of the user. The 
quantitative study of software systems concerning reliability involves 
software reliability measurements. Measurement of software reli-
ability includes two activities, i.e., software reliability estimation and 
software reliability prediction. Software reliability modelsare used to 
measure a software product's reliability or to estimate the number of 
latent defects when it is available to the customers. Such an estimate is 

important for two reasons: 1) as an objective statement of the quality 
of the product and 2) for resource planning for the software mainte-
nance phase [9].

Research has been conducted in software reliability engineering 
over the past three decades and many software reliability models have 
been proposed [4, 12, 19, 20, 23, 29, 30]. The pioneering attempt in 
non-homogenous Poisson process (NHPP) based on software reli-
ability model was the exponential model [7]. The model describes 
the failure/removal phenomenon by an exponential curve. There are 
also software reliability models that describe either S-shaped curves 
or a mixture of exponential and S-shaped curves (i.e., flexible). Some 
of the important contributions of these type of models are due to[11, 
21, 32] etc. In most of these models it is assumed that whenever an 
attempt is made to remove a defect, it is removed with certainty i.e., 
a case of perfect debugging. But the debugging activity is not always 
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Literatura dotycząca inżynierii niezawodności oprogramowania, podejmuje zaledwie nieliczne próby modelowania zjawiska 
uszkodzenia oprogramowania komercyjnego w trakcie jego eksploatacji. Jednym z powodów może być to, iż programiści nie są w 
stanie zmierzyć wzrostu użytkowania oprogramowania komercyjnego w trakcie obrotu handlowego tego typu oprogramowaniem. 
Etap ten różni się bowiem od fazy testowania, gdzie zasoby funkcjonują według określonego wzorca. W niniejszej pracy podjęto 
próbę stworzenia modelu wzrostu niezawodności oprogramowania łącząc to pojęcie z pojęciem liczby użytkowników, jako że 
liczba wykonywanych poleceń zależy właśnie od liczby użytkowników. Liczbę użytkowników szacuje się na podstawie modelu 
marketingu opartego na dyfuzji innowacji. Gdy szacowana wartość jest już znana, można określić częstość wykonywania poleceń. 
Intensywność zgłaszania uszkodzeń zależy od tej wartości. Do modelowania zjawisk zaobserwowania uszkodzenia lub usunięcia 
usterki zastosowano opracowane wcześniej w literaturze modele niezawodności oprogramowania oparte na niejednorodnym pro-
cesie Poissona (NHPP). Modele niezawodności oprogramowania są najczęściej wykorzystywane do projektowania niezawodno-
ści już po zakończeniu prac rozwojowych, ale zanim jeszcze oprogramowanie dotrze do klientów. Mogą być również stosowane do 
modelowania wzorców uszkodzeń lub wzorców występowania usterek w trakcie eksploatacji, stanowiąc tym samym cenny wkład 
do planowania czynności konserwacyjnych. Przykład liczbowy uwzględniający dane z eksploatacji rzeczywistego oprogramowa-
nia ilustruje opisowe i predykcyjne możliwości proponowanych modeli, jak również pokazuje, jak można je stosować w praktyce.
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perfect because of number of factors like tester’s skill/expertise etc. 
In practical software development scenario, the number of failures 
observed/detected may not be necessarily same as the number of de-
fect removed/corrected. Kapur and Garg [11] have discussed in their 
defect removal phenomenon model that as testing grows and testing 
and debugging team gains experience, additional numbers of defects 
are removed without them causing any failure. The testing and debug-
ging, however, may not be able to remove/correct defect perfectly on 
observation/detection of a failure and the original defect may remain 
leading to a phenomenon known as imperfect debugging, or replaced 
by another defect resulting in defect generation. In case of imperfect 
debugging the defect-content of the software is not changed, but be-
cause of incomplete understanding of the software, the original de-
tected defect is not removed perfectly. But in case of defect genera-
tion, the total defect-content increases as the testing and debugging 
progresses because new defects are introduced in the system while 
removing the old original defects [5, 14, 15, 26].Models due to [22, 
33] are defect generation models applied on the exponential model 
[7] and have been also named as imperfect debugging models. Kapur 
et al. [12] introduced the imperfect defect debugging in exponential 
model [7]. They assumed that the defect detection rate per remain-
ing defects is reduced due to imperfect defect debugging. Thus the 
number of failures observed/detected by time infinity is more than the 
initial defect-content. Although these two models describe the imper-
fect debugging phenomenon yet the software reliability growth curve 
of these models is always exponential. Moreover, they assume that the 
probability of imperfect debugging is independent of the testing time. 
Thus, they ignore the role of the learning process during the testing 
phase by not accounting for the experience gained with the progress 
of software testing. Zhang et al. [34] proposed a testing efficiency 
model which includes both imperfect defect debugging and defect 
generation, modeling it on the number of failures experienced, how-
ever both imperfect debugging and defect generation are actually seen 
during defect removal. Recently, Kapur et al. [15] proposed a flexible 
software reliability model with imperfect defect debugging and defect 
generation using a logistic function for defect detection rate, which 
reflects the efficiency of the testing and debugging team.

Very few attempts have been made to model the failure phenom-
enon of software product during its operational use. One of the rea-
sons for this can be attributed to the inability of software engineers to 
measure the growth in usage of software while it is in the market. It is 
unlike the testing phase where testing-effort follows a definite pattern. 
Kenney [17] developed a calendar-time model for a multi-release 
product using Trachtenberg’s [28] general theory of software reliabil-
ity. He has assumed a power function to represent the usage rate of the 
software. Though he argues that the rate at which the software product 
is used is dependent upon the number of its users, the model proposed 
by him fails to capture the growth in number of users of the software. 
To capture the growth in number of end-users of the software, Kapur 
et al. [13] incorporatesa model from marketing to account for usage in 
the operational phase as for the commercially used software, number 
of instructions executed depends on the number of users. 

The rest of this paper is structured as follows. Section 2 provides 
an interdisciplinary modeling approach that combines the subject 
software reliability engineering and marketing. Sections 3 and 4pre-
sentparameter estimation techniquesand filed software reliability data. 
In Sections 5 and 6, data analyses techniques,and model validation 
and comparison criteria are discussed. Filed software reliability data 
analyses and model comparisons discussed in Section 7 and Section 8 
concludes the paper with some general remarks.

2. Interdisciplinary modelling approach

Study of a system in isolation can be easier but may not provide 
the optimal results. On the other hand, the theory of a single discipline 
may prove to be inadequate in explaining the dynamic interactions 
with other systems. Hence there is a need for interdisciplinary ap-
proach. The distinguishing feature of modern science has been the 
increasing interweaving of formally separated disciplines. Mathemat-
ical modeling is a collection of tools that cannot be put under one 
single discipline. They have been facilitating interdisciplinary stud-
ies of many complex situations. Mathematical modeling in marketing 
started in 1950s. They have been applied to measure the effectiveness 
of promotional campaign, brand switching behaviour of consumers, 
success of a new product, market risk analysis, etc. Mathematical 
models have been proposed for testing-effort [1, 18, 25, 31] but they 
are not suitable for measuring usage of software in the market. The 
intensity with which failures would manifest during the operational 
use is dependent upon the number of times the software is used and 
not much has been done in the literature for the situation [3]. Many 
interdisciplinary studies as production management and financial 
management have also been carried out. But few attempts have been 
made at including reliability models, though quality is a very impor-
tant attribute of a successful product.In the software reliability engi-
neering literature, few attempts have been made to include marketing 
parameters for evaluating the operational reliability. One attempt has 
used a modified version of innovation diffusion model [2] to estimate 
the number of licensed users as well as users of pirated copies of the 
software [6].

For a reliable estimate of the growth with time in number of us-
ers who use a particular software release product during operational 
phase, we have employed a mathematical model developed in the 
discipline of marketing management [2]. The employed model can 
be used to account for usage in the operational phase as for the com-
mercially used software, number of instructions executed depends on 
the number of users. The usage function so defined can also take care 
of increasing, linearly decreasing trends as a function of time, which 
implies slow start but gain in growth rate. A big beginning and tail-
ing off in the usage growth.The usage function is estimated through 
innovation diffusion model of marketing. Such an interdisciplinary 
modeling approach that combines the subjectssoftware engineering 
and marketing has been attempted for the first time [16].

Software is subject to failures during execution caused by 1.	 de-
fects remaining in the software 
Software failure occurrence or defect removal phenomena fol-2.	
lows an NHPP with .
Software usage is used as a basis for failure rate.3.	
The number of failures experienced during operation is de-4.	
pendent upon the number of instructions executed.
The number of instructions executed is a function of the 5.	
number of users.
The number of users is a function of time.6.	

The following notations are used for the mathematical formula-
tion purpose:
m	 Expected number of failures experienced in the time interval 

(0, t]
e	 Expected number of instructions executed on the software in 

(0, t] 
W	 Expected number of software users in (0, t] and ∂W/∂t = wt
a	 Expected number of defects lying dormant in software
b	 Proportionality constant denotes the rate at which remaining de-

fects cause failures
p	 Probability of defect removal on a failure
α	 Rate at which the defect may be introduced  during the debug-

ging process
σ	 Rate at which instructions are executed
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β	 Constant representing learning parameter in logistic function
τ	 Expected number of potential users in the population
µ	 Coefficient of external (mass media) influence (i.e., innovation 

rate) 
η	 Coefficient of internal (inter-personal) influence (i.e., imitation 

rate)
k,γ	 Constants.

2.1.	 Development

We model the number of reported failures time t as a pure birth 
counting process (Nt )t≥0, or more specifically, a NHPP. A pure birth 
counting process (Nt )t≥0 is a NHPP with intensity function λt, for all 
t≥0, if it satisfies the following properties:

N1)	 t=0 = 0
(2)	 Nt )t≥0 has independent increments. This implies that for any 
ti>tj>tk>tl the random variables N Nt tj i

−  and N Nt tl k
−  are 

independent.
The random variable 3)	 N Nt tj i

−  has a Poisson distribution with 

mean m mt tj i
− , for all 0≤ti<tj. This implies that:

	  N N k
m m

k
et t

t t
k
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, for all k=0,1,…, (1)

where m dt

t
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0
λ  is the mean value function of the NHPP [Nt,t≥0].

The quantity mt describes the expected number of failures or 
defect removal up to time t. Because of the underlying assumptions 
about the failures and number of defects in the software, we assume 
mt to be a bounded, strictly increasing function satisfying the bound-
ary conditions mt=0=0.

Using the above assumptions the failure occurrence or the defect 
removal phenomena can be described with respect to time as fol-
lows:

	 λt
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Each component on the right hand side of the differential Eq. (2) 
is individually discussed below.

2.1.1.	 Modeling the number of failures reported per instructions

The first component of Eq. (2) relates the number of failures expe-
rienced during operation with the number of instructions executed. In 
other words, during testing instructions are executed on the software 
and the output is matched with the expected results. If there are any 
discrepancy a failure is said to have occurred. Effort is made to identi-
fy and later remove the cause of the failure. The earlier models due to 
Kapur et al. [13] and Shatnawi [27] have the employed flexible model 
[11] and the exponential model [7] respectively, for the purpose. How-
ever, in the exponential model [7] defects are removed immediately 
after a software failure is observed, i.e. the time to remove a defect is 
negligible. But in reality, each observed failure is reported, diagnosed, 
corrected, and then verified. The time from observation to removal 
should not be neglected in a practical software testing process. Be-
sides, in the flexible model [11] defects are removed with certainty 
and no new defect introduced during testing and debugging process. 
In reality this may not be always true. The corrections may themselves 
introduce new faults or they may inadvertently create conditions, not 
previously experienced, that enable other faults to cause failures. This 
results in situations where the actual fault removals are less than the 

removal attempts. To address these issues the models due to Yamada 
et al. [32] and Kapur et al. [15] are selected accordingly.
The first selected software reliability model is the delayed S-shaped 
model [32] that describes the testing and debugging process as a 
two-stage process—failure observation and the corresponding defect 
removal phenomenon. This model can be derived alternatively in 
one stage as follows:

	 ∂
∂

= −( )⋅
m
e

b a mw
w w ,	 (3)

where b b W
b Ww

t

t
=

+ ⋅
⋅2

1
.

The second selected software reliability model is the testing ef-
ficiency model [15] that integrates the effect of imperfect defect de-
bugging and defect generation using a logistic function for the defect 
detection rate, which reflects the efficiency of the testing and removal 
team. In this model, the failure intensity satisfies the following dif-
ferential equation:

	 ∂
∂

= ⋅ ⋅ −( )m
e

p bw aw mw
w ,	 (4)

where b b
w b Wt
=

+ ⋅ − ⋅1 β e
 and a a mw w= + ⋅α .

2.1.2.	 Modeling the number of instructions executed per users

The second component of Eq. (2) relates the number of instructions 
executed with the testing effort or the number of users of the soft-
ware. For the sake of simplicity we assume it to be constant:

	 ∂
∂

=
e

W
σ ,	 (5)

2.1.3.	 Modeling the number of users per unit time

The third component of Eq. (2) relates the growth in number of us-
ers with respect to time. Kenny [17] has used the power function to 
describe the growth in user population who use a particular software 
release [16]:

	 W t
kt

k
=

+

+1

1
,	 (6)

Wt here is the number of users of the software in the operational 
phase at time t.

The function can correctly describe the users growth in terms of 
a slow start but gain in growth rate, a constant addition of users, or a 
big beginning and tail off in the usage rate. In the marketing literature, 
power function is rarely used for the purpose as described above. One 
of the reasons can be that the parameters of the function are not ame-
nable to interpretations. In models proposed by [13, 27], the growth in 
number of users (or adopters) with respect to time using is described 
by the Bass [2] new product diffusion model. In marketing, the diffu-
sion of innovations occurs with every launch of a new type of prod-
uct, and is widely thought to be influenced by both inter-personal and 
mass media communication. Bass labelled those who adopt due to 
external influences innovators, and those who adopt due to internal 
influences imitators.

Mathematically the relationship is expressed as follows:

	
∂
∂

= ⋅ −( ) + ⋅ ⋅ −( )W
t

W W
a

Wt
t

t
tµ τ η τ ,	 (7)
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Solving Eq. (7) with the boundary condition Wt=0=0, we have:

	 Wt
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e
.	 (8)

2.2.	 Formulation

Substituting Eq. (3) and Eq. (5) in Eq. (2), we have:
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Solving Eq. (9) under boundary condition mt=0=0, we have the 
first proposed model as:

	 m a b W et t
b Wt= ⋅ − + ⋅( ) ⋅( )− ⋅ ⋅1 1 γ γ ,	 (10)

here p∙σ=γ.
The failure intensity is given as:
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Substituting Eq. (4) and Eq. (5) in Eq. (2), we have:
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Solving Eq. (12) under boundary condition mt=0=0, we have the 
second proposed model as:
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here p∙σ=γ.
The failure intensity is given as:
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It should be pointed out here that the second proposed model given 
in Eq. (13) is more general than that of the first proposed model given 
in Eq. (10) since it includes the effect of defect generation, imperfect 
defect debugging, and has the models due to [13, 27]as special cases.

3. Parameter estimation techniques

Parameters estimation is of primary concern in software reliabil-
ity measurement. Software filed reliability data can be collected dur-
ing operational from the actual operational sites where software is 
used by its intended users during field tests in the form of failures 
xi (− <x1<x2<…<xk ) reported by sites Wi (W1<W2<W3<…<Wk ) in the 
time interval (0,ti] where i=1,2,…,k. Data usage collected during op-
erational use is estimated by the method of least square as follow:

	
minimize W W

subject to W W
ii

k

k k
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=

=∑ 2
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,

ˆ

ˆ
	 (15)

where Ŵk=Wk implies that the estimated value is equal to the actual 
value.

Using these estimated parameters values, we estimate the param-
eters in the proposed models given in Eq. (10) and Eq. (13)and the 
models under comparison given Table 1 by the method of maximum 
likelihood estimation (MLE). The Likelihood function L  for the un-
known parameters with the mean value function mt takes on the form:

	L parameters W x
m m

x x
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t t
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Taking natural logarithm of (16) we get:

ln ln lnL x x m m m m x xi ii
k

t t t t i ii
k

i i i i
= −( ) −( ) − −( ) −( )−= − − −=∑ 11 1 1 11∑∑ (17)

The MLE of the unknown parameters can be obtained by maxi-
mizing the likelihood function subject to the parameters constraints.

For faster and accurate calculations, the statistical package for 
social sciences (SPSS) based on the nonlinear regression technique 
has been utilized for the estimation of the parameters of the proposed 
models and the models under comparison. Non-linear regression is a 
technique of finding a nonlinear model of the relationship between 
the dependent variable and a set of independent variables. Unlike 
traditional linear regression, which is restricted to estimating linear 
models, non-linear regression can estimate models with arbitrary re-
lationships between independent and dependent variables.

4. Filed software reliability data

An actual field data from a larger release of a telecommunica-
tions switch software given in Table 2. This data is available in 
the form (ti,wi,xi )(i=1,2,3,…,140)where w_iis the number of sites 
reporting failures xi per time ti (t1<t_2<t3<…<t140 ), t140=93.5, 
W wii140 1

140 8109= ==∑ , and x140=100. Note that the data has been 
normalized to protect proprietary information. The main effect of nor-
malization on the analysis is one of scaling. Therefore, the analysis of 
the non-normalized data would be essentially the same [8] and further 
studied in [27]. Therefore, the data set allows direct comparison with 
the work of others. 

Table 1.	 Models under comparison.
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5. Data analysis techniques

Before applying any software reliability model to a set of failure 
data it is advisable to determine whether the failure data does, in fact, 
exhibit reliability growth. If a set of failure data does not exhibit in-
creasing reliability as testing progresses, there is no point in attempt-
ing to estimate and predict the system’s reliability. Since the proposed 
models are failure count models, the test may only be applied to data 
in which the test intervals are of equal length. Therefore, we divided 

the time interval (0,t] into k units of time of equal length. The two 
trend tests that are commonly carried out are [10]:

Arithmetic mean test•	 . This test consists of computing the arith-
metic mean τk of the observed times ni, i=1,2,…,k. 
 

					     τk ii
k

k
n= =∑1

1 ,  (18) 

 
An increasing sequence of τ_k indicates reliability growth and 
a decreasing sequence indicates reliability decay.

Table 2.	 Field data from a larger release of a telecommunications switch software. Data is calendar-time, %Cum SW Failures is the percentage of the total number 
of software failure experienced in the calendar interval reported in the table, %Cum Usage Time is the percentage of the total in service time accumulated 
over the calendar interval reported, and %Sites is the percentage of sites that have this version of the software release loaded on a given date. Note that the 
data has been normalized to protect proprietary information [8].

Date
%cum 

SW
Failures

%cum 
Usage

Failures
%Site Date

%cum 
SW

Failures

%cum 
Usage

Failures
%Site Date

%cum 
SW

Failures

%cum 
Usage

Failures
%Site Date

%cum 
SW

Failures

%cum 
Usage

Failures
%Site

1 0 0.0 2 36 35 11.4 73 71 79 49.0 98 106 96 78.8 54

2 1 0.1 2 37 38 12.2 75 72 79 50.2 97 107 96 79.4 53

3 1 0.1 2 38 39 13.1 76 73 80 51.3 95 108 97 80.0 52

4 1 0.1 2 39 40 14.0 78 74 81 52.4 95 109 97 80.6 50

5 1 0.1 2 40 42 14.9 81 75 82 53.4 93 110 97 81.2 48

6 1 0.2 3 41 44 15.8 83 76 83 54.5 91 111 97 81.7 48

7 2 0.2 3 42 45 16.8 85 77 83 55.5 90 112 98 82.3 47

8 2 0.3 4 43 47 17.8 86 78 84 56.6 89 113 98 82.8 46

9 2 0.3 5 44 49 18.8 88 79 85 57.6 88 114 98 83.3 45

10 2 0.4 5 45 50 19.8 90 80 85 58.6 85 115 98 83.9 45

11 3 0.4 6 46 52 20.9 92 81 86 59.6 82 116 98 84.4 45

12 4 0.5 7 47 54 21.9 94 82 86 60.5 80 117 98 84.9 42

13 4 0.6 7 48 55 23.0 95 83 87 61.4 78 118 98 85.3 40

14 5 0.7 9 49 56 24.1 96 84 87 62.3 78 119 98 85.8 39

15 7 0.8 13 50 57 25.2 96 85 88 63.2 76 120 98 86.3 38

16 7 1.0 16 51 58 26.3 95 86 88 64.1 75 121 98 86.6 38

17 8 1.1 16 52 59 27.4 95 87 89 64.9 74 122 98 87.1 37

18 9 1.5 17 53 60 28.5 95 88 89 65.8 72 123 98 87.5 37

19 10 1.7 91 54 60 29.6 96 89 90 66.6 71 124 98 87.9 36

20 10 2.0 22 55 63 30.7 98 90 90 67.4 71 125 98 88.3 36

21 11 2.2 25 56 64 31.9 98 91 90 68.2 69 126 98 88.7 35

22 13 2.6 29 57 65 33.0 99 92 91 69.0 68 127 99 89.1 34

23 14 2.9 33 58 66 34.1 99 93 91 69.8 67 128 99 89.5 34

24 16 3.3 37 59 67 35.3 99 94 92 70.5 65 129 99 89.9 33

25 17 3.8 41 60 69 36.4 99 95 92 71.3 64 130 100 90.3 32

26 18 4.3 46 61 70 37.6 99 96 92 72.0 63 131 100 90.7 31

27 20 4.8 49 62 70 38.7 99 97 92 72.7 62 132 100 91.0 30

28 22 5.4 54 63 72 39.9 100 98 93 73.4 61 133 100 91.4 30

29 25 6.1 56 64 73 41.0 99 99 93 74.1 61 134 100 91.7 29

30 26 6.7 60 65 74 42.1 99 100 93 74.8 60 135 100 92.0 28

31 28 7.4 63 66 75 43.3 99 101 94 75.5 59 136 100 92.3 27

32 30 8.2 65 67 76 44.4 99 102 94 76.2 59 137 100 92.7 27

33 32 8.9 67 68 77 45.6 100 103 95 76.9 58 138 100 93.0 25

34 33 9.7 69 69 77 46.7 100 104 95 77.5 57 139 100 93.2 25

35 35 10.5 70 70 77 47.9 99 105 95 78.2 56 140 100 93.5 24
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Laplace Test•	 . This test is superior from an optimality point of 
view and is recommended for use when the NHPP assumption 
is made. In terms of n_i, the number of failures during unit of 
time i, the expression of the Laplace factor is:	  
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In practice, in the context of reliability growth, negative values 
indicate a decreasing failure intensity and thus a reliability increase, 
positive values suggest an increasing failure intensity and thus a reli-
ability decrease, and values oscillating between −2 and +2 indicate 
stable reliability.

In other words, in order to determine whether the software under-
went a reliability growth or not, we apply both the arithmetic mean 
and Laplace trend test to the failure data.

6. Model validation and comparison criteria 

The performance of a software reliability model judged by its 
ability to fit the past software failure data (i.e., goodness of fit criteria) 
and to predict satisfactorily the future behavior from present and past 
data behavior (i.e., predictive validity criterion).

We evaluate the performance of the models under comparison 
given in Table 1 using MSE, Bias, Variation, and RMSPE metrics. 
The smaller the metric value the better [15, 24].

The mean square fitting error (MSE)•	 . The models under com-
parison are used to simulate the failure data, the difference be-
tween the expected values, m̂ti  and the observed data xi is 

measured by MSE as follows:

	 MSE
k

xmt ii
k

i
= −( )=∑1 2

1 ̂ 	 (20)

	 where k is the number of observations.
Bias•	 . The difference between the observation and prediction 
of number of failures at any instant of time i is known as PEi 
(prediction error). The average of PEs is known as bias:

	 Bias
k

PEii
k= =∑1

1 	 (21)

	 where PEi=Actual(observed)i−Predicted(estimated)i,
Variation•	 . The standard deviation of prediction error is known 
as variation:

	
Variation

k
PE Biasii

k=
−

−( )=∑1
1

2
1

	 (22)

Root Mean Square Prediction Error •	 (RMSPE). It is a measure 
of closeness with which a model predicts the observation:

	
RMSPE Bias Variation= +( )2 2

Predictive validity is defined as the capability of the software reli-
ability model to determine the future failure behavior from present 
and past failure behaviour. This capability is significant only when 
failure behavior is changing [20]. 

Assume that we have observed xk failures by the end of operating 
time tk. We use the failure data up to time te (≤tk) to estimate the pa-
rameters of m̂. Substituting the estimates of the parameters in the 
mean value function yields the estimate of the number of failures m̂ti  
by time tk. The estimate is compared with the actually observed 
number xk. This procedure is repeated for various values of te. We can 
visually check the predictive validity by plotting the relative error 
against the normalized time:

	
Relative Error

x
x

Normalized Time t
t

mt k

k

e

k

k=
−

=, and  
̂

     (24)

The error will approach zero as te approaches tk. If the points are 
positive (negative), the model tends to overestimate (underestimate) 
the future failure phenomenon. Numbers closer to zero imply more 
accurate prediction. The relative error is said to be acceptable if it is 
within ±10 percent [12].

7. Filed softwarereliability data analyses and model 
comparisons

7.1.	 Trend analysis

Figures 1 and 2 trace the arithmetic mean and Laplace trend tests 
respectively. Both trend tests indicate reliability decay which is ex-
pected and considered normal at the start of a new activity, such as a 
new life cycle phase, changing test sets within the same phase, adding 
new users, activating the system with a different user profile, or may 
also result from regression defects. Since the decay last for short pe-
riod we should not pay attention to it. The reliability decay followed 
by reliability growth is usually welcome because it indicates that, 
after removal of the first defect, the corresponding activity reveals 
fewer and fewer defects [10]. Since the failure data exhibits increas-
ing reliability as testing progresses, there is a point in attempting to 
estimate and predict the system’s reliability. As both trend tests show 
reliability decay followed by reliability growth, which suggest the use 
of S-shaped models. Therefore, the proposed models with S-shaped 
mean value functions can be applied to failure data displaying a trend 
that behaves according to their assumptions.

Fig. 1. Arithmetic mean trend test
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7.2.	 Goodness of fit criteria analysis

The resultant parameters estimation and the performance of the 
usage functions under comparison are tabulated in Table 3. From this 
table, we can see that the innovation diffusion model [2] has lower 
MSE, bias, variation, and RMSPE metric values. Therefore, the in-
novation diffusion model is good enough to give a more accurate de-
scription of software usage in the operational phase. 

The fitting of the usage functions under comparison to the actual 
cumulative and noncumulative usage are graphically illustrated in Fig-
ures 3 and 4 respectively. The power function [17] shows a poor fitting 
while innovation diffusion model [2] fits the data excellently as seen in 
Figure 3. It is clearly seen from Figure 4 that the number of sites/users 
who adopted this particular software product is increasing at a rapid rate 
and there is a stability after which it decreases in the presence of com-
petitors or other reasons (e.g., next release becomes available). From 

these figures, we can observe that the 
innovation diffusion model [2] provides 
more accurate description of usage than 
the power function [17].

The parameter estimation and com-
parison criteria results of the models 
under comparison can be viewed in 
Table 4. The parameters of the innova-
tion diffusion [2] were estimated by the 
least squares estimation method and 
given in Table 3. Using these estimated 

values, the MLE method is then applied to estimate the remaining pa-
rameters of the models under comparison. If we look at the estimation 
results, we notice that the value of parameter ‘β’, i.e., is greater than 
zero, which implies the S-shaped nature defined by the fault detection 
mean value function for this model. Besides, the value of parameter 
‘α’, is zero, which implies the debugging process is perfect. It is worth 
noting that the second proposed model given in Eq. (13) reduces to 
the model [13] when applied due to its built-in flexibility. In addition, 
we can see that both of the proposed models provide improved results 
because of lower MSE, bias, variation, and RMSPE metric values.

The fitting of the models under comparison to the actual filed 
data are graphically illustratedin Figures 5 and 6. From Figure 5 we 
notice the behavior of failure data and observe that it is S-shaped in 
nature. This further justified by the use of the proposed models to 
detect the defects in the software. It is clearly seen from Figure 6 that 
the evolution of the failure intensity is not monotonous decreasing but 
S-shaped, i.e., first increasing-then-decreasing. Failure intensity has 
been proven to be very useful for allocating resources and determin-
ing when to stop testing in commercial systems. The distribution of 
failure occurrence during operation as depicted in Figure 6 shows the 
number of failure occurrence during an interval has a higher rate in 
the initial stages, reaches a maximum number per interval and then 

Fig. 2. Laplace trend test

Fig. 3. Cumulative usage curves

Fig. 4. Non-cumulative usage curves

Table 3.	 Parameter estimation and comparison criteria metrics results

Usage Functions
Under Comparison

Parameter Estimation Comparison Criteria

κ τ μ η MSE Bias Variation RMSPE

Power Function [17] 1.02 — — — 1168418 −455 984 1084

Innovation Diffusion [2] — 8134.5 .00163 .0475 18422 34 132 136

— the parameter is not part of the corresponding function
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exponentially reduces over time toward zero. In other words, we may 
conclude that as the cumulative failure count increases, the failure 
intensity decreases.

7.3. Predictive Validity Analysis

The filed data is truncated into different proportions and used 
to estimate the parameters of the proposed models. For each trunca-
tion, one relative defect is obtained. Figure 7 graphically illustrates 

Fig. 8. Retrodictive and predictive abilityFig. 7. Predictive validity

Fig. 5. Cumulative failure removal curves Fig. 6. Non-Cumulative failure removal curves

Table 4.	 Parameter estimation and goodness of fit metric results

Models under
Comparison

Parameters Estimation Comparison Criteria

a b γ α β MSE Bias Variation RMSPE

Model due to [27] 105.37 .005617 .061249 — — 3.85 .287 1.95 1.97

Model due to [13] 103.65 .020765 .017874 — 3.969 3.06 −.007 1.76 1.76

Proposed in Eq.(10) 103.31 .035260 .010778 — — 3.42 −.004 1.85 1.85

Proposed in Eq.(13) 103.65 .020765 .017874 0.0 3.969 3.06 −.007 1.76 1.76

— indicates the parameter is not part of the corresponding model 
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the result of the predictive validity. It is observed that the predictive 
validity of the model varies from one truncation to another. The error 
relative of the proposed models underestimates the failure observation 
process. Figure 8 graphically illustrates the retrodictive and predic-
tive ability of the proposed models. The data is truncated at te (50% 
approx.) to estimate the proposed model parameters. The proposed 
models are then used to estimate the whole data. The points before te 
(marked by a dotted arrow) demonstrate the retrodictive ability while 
the points afterte demonstrate the predictive ability of the proposed 
models. It is clearly seen that 50% of the normalized time is sufficient 
to predict the future behavior of the failure process reasonably, which 
enable proper planning and of the maintenance effort. This, in turn, 
minimizes the maintenance cost without decreasing customer satis-
faction.

8. Concluding remarks

Software reliability model is a mathematical expression that spec-
ifies the general form of the software failure process as a function of 
factors such as fault introduction, fault removal, and the operational 
environment. NHPP based Software reliability models have been 
quite successful tools in practical software reliability engineering. 
These models consider the debugging process as a counting process 
characterized by its mean value functions. Software reliability, can 
be estimated once the mean value function is determined. Model pa-
rameters are usually estimated using either the maximum likelihood 
method or least squared estimate. They have been widely used to es-
timate the reliability of software during testing. Many authors have 
even tried to extend them to represent the failure phenomenon during 
the operational phase, typically used in release time problem of soft-
ware. But this approach is not correct when usage of software is dif-
ferent from that during testing, which is actually the case for most of 
the commercial software. Commercial software brings many benefits 
to society, and plays a vital role in the development and maintenance 
of a diverse and vibrant information and communication technology 
sector. A commercial software developer endeavors to make its soft-
ware product popular in the market by selling more and more copies 
of its product. Apart from satisfying customers by meeting all their 
requirements and attaching additional features, the developer at the 

same time makes constant efforts to build the software defect free. 
For measuring the operational reliability of a commercial software 
product, the main issue is the availability of software filed reliability 
data that is needed for determining reliability. Software development 
companies like Microsoft employees customer experience improve-
ment program (CEIP) technology, to record both failure data and us-
age data. Since CEIP is available to a user by subscription only, the 
total population size of the observed group is known. 

In this paper, an attempt has been made to model the software reli-
ability growth linking it to the number of users who use a particular 
software release. Because the number of instructions executed depends 
on the number of users. The number of users is estimated through an 
innovation diffusion model of marketing. Once the estimated value 
is known, the rate at which instructions are executed can be found. 
The intensity with which failures would be reported depends upon 
this value. The software reliability models developed in the literature 
can now be used to model the fault exposure phenomenon. Following 
this the proposed models can help software companies like Microsoft 
to improve the quality, reliability and performance of its commercial 
software products. The proposed models have been evaluated by how 
good they can fit the filed data and how predictive they are. The re-
sults obtained from the proposed models discussed in this paper are 
quite encouraging, as can be viewed through the numerical illustra-
tions shown in the tables and figures obtained after we performed the 
estimation on real filed reliability data sets. The numerical example 
concludes that the consideration of the effect of learning with two 
types of imperfect debugging in software reliability growth modeling 
assumptions can improve the descriptive performance of the models 
and the predictive performance as well. 

There is a rise of interest in increasing interdisciplinary studies. It 
is essential to be able to predict the future scenario more accurately. 
We feel this study is an important step in that direction. The emphasis 
of the study is to show how one field of activity can enrich the other 
and vice-versa. Further studies are needed to examine the perform-
ance of the proposed models more by using many other reported filed 
data. Finally, we believe that the approach followed in this paper will 
help to a great extent and provides a large scope for further extension 
and generalization.
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