Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of parameter estimation for the polynomial in the input variables regression function is formulated and solved. The input and output variables of the regression function are multidimensional matrices. The parameters of the regression function are assumed to be random independent multidimensional matrices with Gaussian distribution and known mean value and variance matrices. The solution to this problem is a multidimensional-matrix system of the linear algebraic equations in multidimensional-matrix unknown regression function parameters. We consider the particular cases of constant, affine and quadratic regression function, for which we have obtained formulas for parameter calculation. Computer simulation of the quadratic regression function is performed for the two-dimensional matrix input and output variables.
Czasopismo
Rocznik
Tom
Strony
291--314
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Belarusian State University of Informatics and Radioelectronics, P. Brovki str. 6, Minsk, 220013, Republic of Belarus
Bibliografia
- Cayley A. (1842/9) On the notations and properties of certain functions resolvable into a series of determinants. Trans. Cambridge Philos. Soc. 8, 85–88.
- Ermakov, S. M. and Zhiglyavskii, A. A. (1987) Mathematical theory of optimal experiment. Moscow, Publishing house “Science”. In Russian.
- Fahrmeir, L. and Kneib, Th. (2011) Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data. Oxford Statistical Science Series, Oxford University Press.
- Feldbaum, A. A. (1966) The foundations of the theory of optimal automatic systems. Moscow, Publishing house “Science”. In Russian.
- Klepikov, N. P. and Sokolov, S. N. (1961) Analysis and Planning of Experiments by the Method of Maximum Likelihood. Berlin, Akademie-Verlag.
- Mukha, V. S. and Sergeev, E. V. (1974) Bayesian estimations of the parameters of the regression objects. Proceedings of LETI, 149, 26–29. In Russian.
- Mukha, V. S. and Sergeev E. V. (1976) Dual control of regression objects. Proceedings of LETI, 202, 58–65. In Russian.
- Mukha, V. S. (2004) Analysis of multidimensional data. Minsk, Technoprint. In Russian.
- Mukha, V. S. (2005) Vector Multiconnected Markov Chains. Journal of Automation and Information Sciences, 37, 63–69.
- Mukha, V. S. (2006) Multidimensional Matrix Approach in Parallel Factor Analysis. Journal of Automation and Information Sciences, 38, 21–29.
- Mukha, V. S. (2007a) The Best Polynomial Multidimensional-matrix Regression. Cybernetics and Systems Analysis, 43, 3, 427–432.
- Mukha, V. S. (2007b) Multidimensional-matrix polynomial regression analysis. Parameters estimations. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 1, 45–51. In Russian.
- Mukha, V. S. (2008) PARAFAC-regression Analysis for Determining the Concentration of Substances in Solutions. Journal of Automation and Information Sciences, 40, 25–40.
- Mukha, V. S. (2011) Minimum average risk and efficiency of optimal polynomial multidimensional-matrix predictors. Cybernetics and Systems Analysis, 47, 2, 277–285.
- Mukha, V. S. (2012) Educational Timetable Problem: Formulation and Solving. Journal of Automation and Information Sciences, 44, 12, 55–67.
- Mukha, V.S. (2017) On Statistical Forecasting of the Atmospheric Temperature for Month. American Journal of Environmental Engineering and Science, 4, 6, 71–77.
- Mukha, V. S. (2020) On the Bayesian multidimensional-matrix polynomial empirical regression / Vladimir S. Mukha, Irina G. Malikova // Scientific research of the SCO countries: synergy and integration: Materials of the International Conference, Beijing, May 14, 2020. China, 2020, 159–165. DOI: https://doi.org/10.34660/INF.2020.28.63870.
- Scott, R.F. (1879/80) On cubic determinants and other determinants of higher class and on determinants of alternate numbers. Proc. London Math. Soc. (1), 11, 17–29.
- Sokolov, N. P. (1960) Spatial matrices and their applications. Moscow, Fizmatgiz. In Russian.
- Sokolov, N. P. (1972) Introduction to the theory of multidimensional matrices. Kiev, Naukova dumka. In Russian.
- Wakefield, J. (2013) Bayesian and Frequentist Regression Methods. Springer.
- Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics. John Wiley and Sons, Inc.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39ccee93-9514-4580-8138-3606b8e55247