PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Multi-domain, Autonomous Measurement Buoy as an Element of the Water Quality Monitoring and Early Warning System in Rivers and Water Reservoirs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a novel, innovative, open multi-domain platform for early warning against adverse events in reservoirs and watercourses, which can measure temperature, pH, redox, conductivity, turbidity, chlorophyll and phycocyanin. These parameters are key indicators of cyanobacteria bloom. This platform allows remote and distributed monitoring of important locations on lakes and rivers. The station's design enables the use of both wired sensors directly connected to the station and wireless data collection from locally dispersed measurement points that communicate with the station-buoy. The data aggregation system is open, and the technological solution of the station is universal, which means it can use different sensors for chemical and biological parameters that are required by, for example, the Water Framework Directive, from the market and industry standards. The platform also has built-in machine learning and data analysis mechanisms that can optimise the number of stations needed to achieve the desired level of data acquisition. The sensor dispersion and station autonomy ensure the flexibility and scalability of the measurements.
Rocznik
Tom
Strony
18--29
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
autor
  • Hilo Solutions Sp. z o.o., Szczecinek, Poland
  • Enviwise Sp. z o.o., Szczecinek, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
Bibliografia
  • Agade, P., Bean, E.Z., Dean, R.N., Blersch, D., Vasconscelos, J., Knappenberger, T., Brantley, E. (2022). GatorByte: A Water-Quality Mapping Buoy for Locating Watershed Pollution Sources. Proceedings of IEEE Sensors, Dallas, TX, USA, 2022-October. 1-4. https://doi.org/10.1109/SENSORS52175.2022.9967172
  • Beckman, J.N., Long, J.W. (2022). Quantifying errors in wind and wave measurements from a compact, low-cost wave buoy. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.966855
  • Chamier-Gliszczyński, N.J. (2011). Sustainable operation of a transport system in cities. W (Red.), Key Engineering Materials. 175-178. https://doi.org/10.4028/www.scientific.net/KEM.486.175
  • Chamier-Gliszczyński, N.J., Bohdal, T. (2016). Urban Mobility Assessment Indicators in the Perspective of the Environment Protection. Annual Set The Environment Protection, 18, 670-681.
  • Colen, M.E., Houard, H., Imenkamp, C., van Velthoven, G., Pajula, S., Malheiro, B., Ribeiro, C., Justo, J., Silva, M.F., Ferreira, P., Guedes, P. (2019). Water Intellibuoy – An EPS@ISEP 2018 Project. In Advances in Intelligent Systems and Computing, 917, 439-449. https://doi.org/10.1007/978-3-030-11935-5_42
  • Delwiche, K., Hemond, H.F. (2017). An enhanced bubble size sensor for long-term ebullition studies. Limnology and Oceanography: Methods, 15(10). https://doi.org/10.1002/lom3.10201
  • Dipshika, M., Kannan, P., Arun, S. (2019). A Survey on Smart Water Monitoring and Control Using Internet of Things. IJSDR1911011 International Journal of Scientific Development and Research, 4(11).
  • Głowiński, S., Sobieraj, M., Błażejewski, A., Pecolt, S.Z. (2023). Design of a Low-Cost Measurement Module for the Acquisition of Analogue Voltage Signals. Electronics (Switzerland), 12. https://doi.org/10.3390/electronics12030610
  • Grunt, M., Błażejewski, A., Pecolt, S. Z., Królikowski, T.P. (2022). BelBuk System—Smart Logistics for Sustainable City Development in Terms of the Deficit of a Chemical Fertilizers. Energies, 15(13). https://doi.org/10.3390/en15134591
  • Iafolla, L., Fiorenza, E., Chiappini, M., Carmisciano, C., Iafolla, V.A. (2022). Sea Wave Data Reconstruction Using Micro-Seismic Measurements and Machine Learning Methods. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.798167
  • Jin, J.Y., Dae Do, J., Park, J.S., Park, J.S., Lee, B., Hong, S.D., Moon, S.J., Hwang, K.C., Chang, Y.S. (2021). Intelligent Buoy System (INBUS): Automatic Lifting Observation System for Macrotidal Coastal Waters. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.668673
  • Jörges, C., Berkenbrink, C., Stumpe, B. (2021). Prediction and reconstruction of ocean wave heights based on bathymetric data using LSTM neural networks. Ocean Engineering, 232. https://doi.org/10.1016/j.oceaneng.2021.109046
  • Khattar, R., Ames, D. (2020). A Web Services Based Water Data Sharing Approach using Open Geospatial Consortium Standards Technology Methods. Open Water Journal, 6(1), 2.
  • Knight, P.J., Bird, C.O., Sinclair, A., Plater, A.J. (2020). A low-cost GNSS buoy platform for measuring coastal sea levels. Ocean Engineering, 203. https://doi.org/10.1016/j.oceaneng.2020.107198
  • Lancaster, O., Cossu, R., Boulay, S., Hunter, S., Baldock, T.E. (2021). Comparative wave measurements at a wave energy site with a recently developed low-cost wave buoy (Spotter), adcp, and pressure loggers. Journal of Atmospheric and Oceanic Technology, 38(5). https://doi.org/10.1175/JTECH-D-20-0168.1
  • Lapointe, B.E., Burkholder, J.M., Van Alstyne, K.L. (2018) Harmful Macroalgal Blooms in a Changing World: Causes, Impacts, and Management, S.E. Shumway, J.M. Burkholder, S.L. Morton (Eds.), Harmful Algal Blooms: a Compendium Desk Reference, John Wiley & Sons, Ltd., Hoboken, New Jersey, 515-542.
  • Mantas, V.M., Pereira, A.J.S.C., Neto, J., Patrício, J., Marques, J.C. (2013). Monitoring estuarine water quality using satellite imagery. The Mondego river estuary (Portugal) as a case study. Ocean and Coastal Management, 72. https://doi.org/10.1016/j.ocecoaman.2011.06.013
  • Medina, J.D., Arias, A., Triana, J.M., Giraldo, L.F., SeguraQuijano, F., Gonzalez-Mancera, A., Zambrano, A.F., Quimbayo, J., Castillo, E. (2022). Open-source low-cost design of a buoy for remote water quality monitoring in fish farming. PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0270202
  • Ng, C.L., Senft-Grupp, S., Hemond, H.F. (2012). A multi-platform optical sensor for in situ sensing of water chemistry. Limnology and Oceanography: Methods, 10. https://doi.org/10.4319/lom.2012.10.978
  • Pecolt, S.Z., Błażejewski, A., Sobieraj, M., Głowiński, S. (2023). Design of a Low-Cost Measurement Module for the Acquisition of Analogue Voltage Signals. Electronics (Switzerland), 12(3), 610. https://doi.org/10.3390/electronics12030610
  • Ribas-Ribas, M., Kilcher, L.F., Wurl, O. (2018). Sniffle: A step forward to measure in situ CO2 fluxes with the floating chamber technique. Elementa: Science of the Anthropocene, 6, 14. https://doi.org/10.1525/elementa.275
  • Rodero, C., Bardaji, R., Olmedo, E., Piera, J. (2022). Operational monitoring of water quality with a Do-It-Yourself modular instrument. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1004159
  • Sim, B.R., Kim, H.C., Kim, C.S., Kim, J.H., Park, K.W., Lim, W.A., Lee, W.C. (2020). Seasonal distributions of phytoplankton and environmental factors generate algal blooms in the taehwa river, south korea. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123329
  • Šaliga, J., Žiga, M., Galajda, P., Drutarovský, M., Kocur, D., Maceková, L. (2015). Wireless sensor network for river water quality monitoring. XXI IMEKO World Congress "Measurement in Research and Industry".
  • Stachiw, J.D. (1980). Performance of photovoltaic cells in undersea environment. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 102(1). https://doi.org/10.1115/1.3183829
  • Tulloh, R., Sodikin, I., Khasanah, R. (2019). Usulan Perawatan Buoy Tsunami Dengan Menggunakan Metode Risk Based Maintenance. Jurnal REKAVASI, 7(1).
  • Ula, M., Tjut Adek, R., Bustami, B., Mulaesyi, S., Bayu Juhri, M. (2022). A Monitoring System for Aquaponics Based on Internet of Things. Proceedings of Malikussaleh International Conference on Multidisciplinary Studies (MICoMS), 3, https://doi.org/10.29103/micoms.v3i.49
  • Wang, Y., Li, Y., Lu, C. (2023). Evaluating the Effects of Logistics Center Location: An Analytical Framework for Sustainable Urban Logistics. Sustainability, 15, 3091. https://doi.org/10.3390/su15043091
  • Washburn, L., Johnson, C., Gotschalk, C.C., Thor Egland, E. (2001). A gas-capture buoy for measuring bubbling gas flux in oceans and lakes. Journal of Atmospheric and Oceanic Technology, 18(8), 1411-1420, https://doi.org/10.1175/1520-0426(2001)018<1411:AGCBFM>2.0.CO;2
  • Wilson, D. (2009). The Chesapeake Bay Interpretive Buoy System: Recent expansion and advances. MTS/IEEE Biloxi – Marine Technology for Our Future: Global and Local Challenges, OCEANS 2009. 1-5, https://doi.org/10.23919/oceans.2009.5422353
  • Xiaojun Z., Xiaomeng J., Yuxin L. (2022). Water-induced luminescence improvement in a lanthanide β-diketone complex for monitoring water purity, Chinese Chemical Letters, 33(4). 2117-2120, https://doi.org/10.1016/j.cclet.2021.08.080
  • Zhao, J., Zhang, H., Chen, Z., Wang, Z., Zhang, Y., Shang, X. (2015). On-the-fly measurements of large-drop water level and high flow velocity in the closure gap. Flow Measurement and Instrumentation, 45. https://doi.org/10.1016/j.flowmeasinst.2015.06.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39cbba50-13c0-45f6-b67f-b5000deb0e90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.