PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microscopic analysis of the nanostructures impact on endothelial cells

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays nanostructures are more and more often designed as carriers for drug delivery, especially to improve the drug pharmacokinetics and pharmaco-dynamics. Numerous kinds of nanostructures are considered a good prospect for medical applications thanks to their small size, acceptable biocompatibility and toxicity. Due to the fact that nanotechnology is a new field of science, every nano-scale product must be thoroughly examined regarding its toxicity to the human body. This study provides new insights into effects of exposing endothelial cells to the selected nanostructures. Dendrimers of the fourth generation (PAMAMs), multi-walled carbon nanotubes (MWCNTs) and silver nanoparticles (SNPs) were used to evaluate nanostructures influence on endothelial cells in vitro. The nanostructures were evaluated via transmission electron microscopy and dynamic light scattering technique. The cells previously exposed to the nanostructures were observed and analyzed via the atomic force microscopy and scanning electron microscopy to obtain a quantitative evaluation of the cells morphology. The presence of multi-walled carbon nanotubes and silver nanoparticles on the cells surface was confirmed by the scanning electron microscopy. Our results confirm that the surface association and/or uptake of nanostructures by the cells resulting from physicochemical and biological processes, affect the cells morphology. Morphological changes can be induced by the membrane proteins interaction with nanomaterials, which trigger a sequence of intracel-lular biological processes.
Rocznik
Strony
2--8
Opis fizyczny
Bibliogr. 32 poz., tab., wykr., zdj.
Twórcy
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego St. 7/9, 90-752 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
  • BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
Bibliografia
  • [1] A.M. Szczygiel, G. Brzezinka, M. Targosz-Korecka, S. Chlopicki, M. Szymonski: Elasticity changes anti-correlate with NO production for human endothelial cells stimulated with TNF-α. Pflugers Archiv: European journal of physiology 463(3) (2011) 487-496.
  • [2] A.M. Kolodziejczyk, G.D. Brzezinka, K. Khurana, M. Targosz-Korecka, M. Szymonski: Nanomechanical sensing of the endothelial cell response to anti-inflammatory action of 1-methylnicotinamide chloride. Int. J. Nanomedicine 8 (2013) 2757-2767.
  • [3] T. Wojcik, E. Buczek, K. Majzner, A. Kolodziejczyk, J. Miszczyk, P. Kaczara, W. Kwiatek, M. Baranska, M. Szymonski, S. Chlopicki: Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. Toxicology In Vitro 29(3) (2015) 512-521.
  • [4] M. Targosz-Korecka, R. Biedron, A.M. Szczygiel, G. Brzezinka, J. Szczerbinski, A. Zuk: Stiffness changes of tumor HEp2 cells cor-relates with the inhibition and release of TRAIL-induced apoptosis pathways. J. Mol. Recognit. 25 (2012) 299-308.
  • [5] Y. Pan, Q. Wu, L. Qin, J. Cai, B. Du: Gold Nanoparticles Inhibit VEGF165-Induced Migration and Tube Formation of Endothelial Cells via the Akt Pathway. BioMed Research International 2014 (2014) 1-11.
  • [6] S.P. Samuel, N. Jain, F. O’Dowd, T. Paul, D. Kashanin, V.A. Gerard, Y.K. Gunko, A. Prina-Mello, Y. Volkov: Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int. J. Nanomedicine 7 (2012) 2943-2956.
  • [7] Nanomaterials (Basel). 2018 Aug 31;8(9). pii: E681. doi: 10.3390/nano8090681. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview
  • [8] S. Sekowski, K. Milowska, T. Gabryelak: Dendrimers in biome-dical sciences and nanotechnology. Postepy Hig. Med. Dosw. 62 (2008) 725-733.
  • [9] A. Bachmatiuk: Badania nad technologią otrzymywania i właś-ciwościami nanorurek węglowych, Szczecin, 2008
  • [10] S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli: Advancement in carbon nanotubes: basics, biomedical applications and toxicity. Journal of Pharmacy and Pharmacology 63 (2011) 141-163.
  • [11] A.C.A. Wan, J.Y. Ying: Nanomaterials for in situ cell delivery and tissue regeneration. Advanced Drug Delivery Reviews 62 (2010) 731-740.
  • [12] S. Schiwek, L. Heim, R.W. Stark, C. Dietz: Manipulation of polystyrene nanoparticles on a silicon wafer in the peak force tapping mode in water: pH-dependent friction and adhesion force. Journal of Applied Physics 117 (2015) 104303.
  • [13] K. Safarova, A. Dvorak, R. Kubinek, M. Vujtek, A. Rek: Usage of AFM, SEM and TEM for the research of carbon nanotubes, in: A. Mendez-Vilas, J. Diaz (Eds), Modern Research and Educational Topics in Microscopy, Formatex (2007) 513-519.
  • [14] H. Oberleithner, C. Riethmullera, H. Schillersa, A.M.G. Graham, H.E. de Wardener, M. Hausberg: Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. PNAS 104(41) (2007) 16281-16286.
  • [15] H. Oberleithner, C. Riethmuller, T. Ludwig, M. Hausberg, H. Schillers: Aldosterone remodels human endothelium. Acta Phy-siol 187 (2006) 305-312.
  • [16] H. Oberleithner, C. Callies, K. Kusche-Vihrog, H. Schillers, V. Shahin, C. Riethmüller: Potassium softens vascular endothelium and increases nitric oxide release. Proc. Natl. Acad. Sci. USA 106(8) (2009) 2829-2834.
  • [17] M. Lekka: Atomic force microscopy: A tip for diagnosing cancer. Nature Nanotechnology 7 (2012) 691-692.
  • [18] M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, A.Z. Hryn-kiewicz: Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28 (1999) 312-316.
  • [19] M. Plodinec, M. Loparic, C.A. Monnier, E.C. Obermann, R. Zanetti-Dallenbach, P. Oertle, et al.: The nanomechanical sig-nature of breast cancer. Nature Nanotechnology 7 (2012) 757-765.
  • [20] P. Sokołowska, K. Białkowska, M. Siatkowska, M. Rosowski, M. Kucińska, P. Komorowski et al.: Human brain endothelial barrier cells are distinctly less vulnerable to silver nanoparticles toxicity than human blood vessel cells. Nanomedicine: Nanotechnology, Biology and Medicine 13(7) (2017) 2127-2130.
  • [21] P. Komorowski, M. Siatkowska, T. Wasiak, K. Działoszynska, S. Kotarba, K. Kądzioła et al.: Simultaneous transcriptome and pro-teome analysis of EA.hy926 cells under stress conditions induced by nanomaterials. J Biomed Mater Res B Part B. 000B (2018) 1-11
  • [22] P.K. Maiti, T. Cagin, S.T. Lin, W.A. Goddard: Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules 38 (2005) 979-991.
  • [23] L. Shang, K. Nienhaus, G.U. Nienhaus: Engineered nanopartic-les interacting with cells: size matters. Journal of Nanobiotechnology 12 (2014) 1-11.
  • [24] K. Savolainen, H. Alenius, H. Norppa, L. Pylkkänen, T. Tuomi, G. Kasper: Risk assessment of engineered nanomaterials and nanotechnologies - A review. Toxicology 269 (2010) 92-104.
  • [25] E. Bajak, M. Fabbri, J. Ponti, S. Gioria, I. Ojea-Jimenez, A. Collotta, V. Mariani, D. Gilliland, F. Rossi, L. Gribaldo: Changes in Caco-2 cells transcriptome profiles upon exposure to gold na-noparticles. Toxicology Letters 233 (2015) 187-199.
  • [26] S. Hirano, S. Kanno, A. Furuyama: Multi-walled carbon nano-tubes injure the plasma membrane of macrophages. Toxicol. Appl. Pharmacol. 232 (2008) 244-251.
  • [27] C. Cheng, K.H. Muller, K.K.K. Koziol, J.N. Skepper, P.A. Midgley, M.E. Welland, A.E. Porter: Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30 (2009) 4152-4160.
  • [28] X. Chen, H.J. Schluesener: Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes. Nanotechnology 21 (2010) 105104.
  • [29] S.C. Tilton, N.J. Karin, A. Tolic, Y. Xie, X. Lai, R.F.Jr. Hamilton, K.M. Waters, A. Holian, F.A. Witzmann, G. Orr: Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology 8(5) (2014) 533-548.
  • [30] M. Marmiroli, D. Imperiale, L. Pagano, M. Villani, A. Zappettini, N. Marmiroli: The Proteomic Response of Arabidopsis thaliana to Cadmium Sulfide Quantum Dots, and Its Correlation with the Transcriptomic Response. Front Plant Sci. 6 (2015) 1104.
  • [31] L. Chen, X. Meng, J. Gu, W. Fan, N. Abdlli, F.A. Peprah, N. Wang, F. Zhu, P. Lü, S.Ma, K. Chen: Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. Ecotoxicol Environ Saf. 172 (2019) 388-395.
  • [32] S. Gioria, P. Urbán, M. Hajduch, P. Barboro, N. Cabaleiro, R. La Spina, H. Chassaigne: Proteomics study of silver nanoparti-cles on Caco-2 cells. Toxicol In Vitro 50 (2018) 347-372.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39c8014d-8e97-44b7-83d3-e97793a7a10f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.