PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integration of interval rough AHP and fuzzy logic for assessment of food prone areas at the regional scale

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted to prepare a food susceptibility map in northwest of Hamadan Province, Iran. For this purpose, six criteria related to food (i.e., distance to discharge channel, slope (%), elevation, soil texture and land use, topographic wet index, and check dams) were chosen. Then, based on the role of these criteria on degree of food susceptibility, were weighted both in the context of inter-weighting (fuzzy logic) and outer-criteria (Interval Rough Analytic Hierarchy Process). Finally, by combining these primary weights by weight overlay method in GIS, the food susceptibility mapping was prepared in the study area. The resulted map based on K-means clustering and Silhouette function was divided into 9 clusters, whereas the lower clusters show low susceptibility to food and vice versa. To assess the accuracy of the produced map, 102 food observation points were overlaid on the clustered food susceptibility map. The results showed that among these 102 food points, 66 points are located in the clusters 8 and 9 and 3 points are located on cluster 7. These values show that the produced food susceptibility mapping has a high accuracy.
Słowa kluczowe
EN
flood   AHP   fuzzy logic   IRAHP   K-means  
Czasopismo
Rocznik
Strony
477--493
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Watershed Management, Faculty of Natural Resources, Yazd University, Yazd, Iran
  • Department of Watershed Management, Faculty of Natural Resources, Yazd University, Yazd, Iran
  • Department of Watershed Management, Faculty of Natural Resources, Yazd University, Yazd, Iran
  • Department of Watershed Management, Faculty of Natural Resources, Malayer University, Hamadan, Iran
autor
  • Department of Watershed Management, Faculty of Natural Resources, Birjand University, Birjand, Iran
  • Department of Geoinformatics Z_GIS, University of Salzburg, Salzburg, Austria
  • Department of Watershed Management, Faculty of Natural Resources, Yazd University, Yazd, Iran
Bibliografia
  • 1. Bolourchi P, Uysal S (2013) 2013 fifth international conference on computational intelligence, communication systems and networks. IEEE, pp 83–87
  • 2. Chen H-W, Chang N-B (2010) Using fuzzy operators to address the complexity in decision making of water resources redistribution in two neighboring river basins. Adv Water Resour 33:652–666
  • 3. Darabi H, Choubin B, Rahmati O, Haghighi AT, Pradhan B, Kløve B (2019) Urban flood risk mapping using the GARP and QUEST models: a comparative study of machine learning techniques. J Hydrol 569:142–154
  • 4. Fernández D, Lutz M (2010) Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111(1–4):90–98
  • 5. Fernandez P, Mourato S, Moreira M, Pereira L (2016) A new approach for computing a flood vulnerability index using cluster analysis. Phys Chem Earth Parts A/B/C 94:47–55
  • 6. Gaitani N, Lehmann C, Santamouris M, Mihalakakou G, Patargias P (2010) Using principal component and cluster analysis in the heating evaluation of the school building sector. Appl Energy 87(6):2079–2086
  • 7. Ghosh A, Kar SK (2018) Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Nat Hazards 94(1):349–368
  • 8. Gigović L, Pamučar D, Bajić Z, Drobnjak S (2017) Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water 9(6):360
  • 9. Haghizadeh A, Siahkamari S, Haghiabi AH, Rahmati O (2017) Forecasting flood-prone areas using Shannon’s entropy model. J Earth Syst Sci 126:39
  • 10. Hartman BD, Bookhagen B, Chadwick OA (2016) The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems. Restor Ecol 24(6):761–772
  • 11. Hong H, Tsangaratos P, Ilia I, Liu J, Zhu A-X, Chen W (2018) Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ 625:575–588
  • 12. Ildoromi AR, Sepehri M, Malekinezhad H, Kiani-Harchegani M, Ghahramani A, Hosseini SZ, Artimani MM (2019) Application of multi-criteria decision making and GIS for check dam Layout in the Ilanlu Basin, Northwest of Hamadan Province, Iran. Phys Chem Earth Parts A/B/C 114:102803
  • 13. Iliadis LS (2005) A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environ Model Softw 20:613–621
  • 14. Jun K-S, Chung E-S, Kim Y-G, Kim Y (2013) A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts. Expert Syst Appl 40:1003–1013
  • 15. Kanani-Sadat Y, Arabsheibani R, Karimipour F, Nasseri M (2019) A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J Hydrol 572:17–31
  • 16. Kourgialas NN, Karatzas GP (2011) Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol Sci J 56(2):212–225
  • 17. Kowalzig J (2008) Climate, poverty, and justice: what the Poznan UN climate conference needs to deliver for a fair and effective global deal. Oxfam Policy Pract Clim Change Resil 4(3):117–148
  • 18. Mahmoud SH, Gan TY (2018) Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J Clean Prod 196:216–229
  • 19. Malekinezhad H, Nachtnebel H, Klik A (2011) Comparing the index-flood and multiple-regression methods using L-moments. Phys Chem Earth Parts A/B/C 36:54–60
  • 20. Mayor ÁG, Bautista S, Small EE, Dixon M, Bellot J (2008) Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resour Res 44:1–13. https://doi.org/10.1029/2007wr006367
  • 21. Noori H, Iildoromi AR, Sepehri M, Sepehri N, Artimani MM (2015) Assesment of mechanicaloperationson hydrodynamic features of flood. Iran J Ecohydrol 2(3):245–252. https://doi.org/10.22059/ije.2015.57294
  • 22. Pamučar D, Mihajlović M, Obradović R, Atanasković P (2017) Novel approach to group multi-criteria decision making based on interval rough numbers: hybrid DEMATEL-ANP-MAIRCA model. Expert Syst Appl 88:58–80
  • 23. Papaioannou G, Vasiliades L, Loukas A (2015) Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour Manag 29(2):399–418
  • 24. Pathak DR, Hiratsuka A (2011) An integrated GIS based fuzzy pattern recognition model to compute groundwater vulnerability index for decision making. J Hydro-Environ Res 5:63–77
  • 25. Perera EDP, Lahat L (2015) Fuzzy logic based flood forecasting model for the Kelantan River basin, Malaysia. J Hydro-Environ Res 9(4):542–553
  • 26. Radwan F, Alazba A, Mossad A (2019) Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys 67(1):215–229
  • 27. Raj D, Shaji E (2017) Fluoride contamination in groundwater resources of Alleppey, southern India. Geosci Front 8(1):117–124
  • 28. Ramesh V, Phaomei T, Baskar M, Anbazhagan S (2016) Application of fuzzy gamma operator in landslide susceptibility mapping along Yercaud Ghat Road section, Tamil Nadu, India. In: Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Springer, pp 545–553
  • 29. Saaty TL (1980) The Analytic Hierarchy process: planning, priority setting, l ~ esource Allocation. M cGraw Hill, New York
  • 30. Sema HV, Guru B, Veerappan R (2017) Fuzzy gamma operator model for preparing landslide susceptibility zonation mapping in parts of Kohima Town, Nagaland, India. Model Earth Syst Environ 3(2):499–514
  • 31. Sepehri M, Ildoromi AR, Malekinezhad H, Hosseini SZ, Talebi A, Goodarzi S (2017) Flood hazard mapping for the gonbad chi region, Iran. J Environ Eng Sci 12(1):16–24
  • 32. Sepehri M, Malekinezhad H, Hosseini SZ, Ildoromi AR (2019a) Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city, Iran. Acta Geophys 67(5):1435–1449
  • 33. Sepehri M, Malekinezhad H, Hosseini SZ, Ildoromi AR (2019b) Suburban flood hazard mapping in Hamadan city, Iran. Paper presented at the proceedings of the institution of civil engineers-municipal engineer
  • 34. Shahabi H, Hashim M, Ahmad BB (2015) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ Earth Sci 73:8647–8668
  • 35. Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O (2018) Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int 33:927–941
  • 36. Smithson M (2012) Ignorance and uncertainty: emerging paradigms. Springer, Berlin
  • 37. Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M (2019) GIS-based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. https://doi.org/10.1080/10106049.2019.1566405
  • 38. Thapa R, Gupta S, Reddy D (2017) Application of geospatial modelling technique in delineation of fluoride contamination zones within Dwarka Basin, Birbhum, India. Geosci Front 8(5):1105–1114
  • 39. Weatherill G, Burton PW (2009) Delineation of shallow seismic source zones using K-means cluster analysis, with application to the Aegean region. Geophys J Int 176(2):565–588
  • 40. Xu H, Ma C, Lian J, Xu K, Chaima E (2018) Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J Hydrol 563:975–986
  • 41. Yazdi J, Neyshabouri SS (2014) Identifying low impact development strategies for flood mitigation using a fuzzy-probabilistic approach. Environ Model Softw 60:31–44
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39c407ef-5558-4f5e-9a6a-fa6b72df650f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.