PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal Efficiency of Synthetic Toxic Dye from Water and Waste Water Using Immobilized Green Algae – Bioremediation with Multi Environment Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synthetic dye industry is a significant source of anthropogenic pollutants emitted into many water bodies across the world. Bioremoval is a substitute for industrial techniques for detoxifying dye-contaminated water. Green algae is an abundant microorganism processing to produce cost-effective, eco-friendly, and high-quality method to bioremediation by immobilization technique. In this present study, The effectiveness of the immobilized green alga Chlorella vulgaris to eliminate Congo red dye in both water and wastewater was assessed through the biodegradation Process under various conditions, including pH, concentration of dye, contact time, and NaCl. The results revealed that the removal increased with increasing contact duration, with the maximum bioremoval percentage occurring at 89.6% at a contact time of 13 days. The removal effectiveness of dye as the number of beads of immobilized C.vulgaris algae grew; the highest removal efficiency was achieved at 7–8 beads of immobilized C.vulgaris algae. There was also an inverse relationship between bioremoval and dye concentration; the maximum removal percentage was 90.1% at 0.1 M dye concentration. The highest removal efficiency was found in the range (91.3–86) at pH 6–7. The bioremoval of Congo red dye was similar in fresh and salinity water (87.2% and 85.3%, respectively). This study observed high removal efficiency for immobilized algae to Congo red under different concentrations of NaCl as an indicator of salinity, ranging between 85.3 and 87.2%.
Twórcy
  • Environmental Research and Studies Center, University of Babylon, Iraq
  • Department of Ecology, College of Science, University of Kufa, Iraq
  • Environmental Research and Studies Center, University of Babylon, Iraq
  • Environmental Research and Studies Center, University of Babylon, Iraq
  • Department of Biology, College of Science, University of Babylon, Iraq
Bibliografia
  • 1. Abbas, M. 2020. Experimental investigation of titanium dioxide as an adsorbent for removal of Congo red from aqueous solution, equilibrium and kinetics modeling. J. Water. Reuse. Desal. 10, 251–266 https://doi.org/10.2166/wrd.2020.038.
  • 2. Achour, Y.; Khouili, M.; Abderrafia, H.; Melliani, S.; Laamari, M., El Haddad, M. 2018. DFT investigations and experimental studies for competitive and adsorptive removal of two cationic dyes onto an ecofriendly material from aqueous media. Int. J. Environ. Res. 12, 789–802, https://doi.org/10.1007/s41742-018-0131-x.
  • 3. Al-dahri, T.; AbdulRazak, A.A., Rohani, S. 2022. Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes. International Journal of Coal Preparation and Utilization, 42(7), 2064–2077, https://doi.org/10.1080/19392699.2020.1792456.
  • 4. Anisa, R.; Achmad, S.; Nur, S.Z.; Ahmad, B.H.K.; Tony, H.; Dedy, D.P.; Rajagounder, R., Palanivel, S. 2022. Bioremediation of micropollutants using living and non-living algae - Current perspectives and challenges, Environmental Pollution, 292, Part B, 0269–7491 , https://doi.org/10.1016/j.envpol.2021.118474.
  • 5. Arab, C.; El Kurdi, R., Patra, D. 2021. Efficient removal of Congo red using curcumin conjugated zinc oxide nanoparticles as new adsorbent complex. Chemosphere. 276, 130158, https://doi.org/10.1016/j.chemosphere.2021.130158.
  • 6. Astuti, D.; Aprilita, N., Mudasir, M. 2020. Adsorption of the anionic dye of congo red from aqueous solution using a modified natural zeolite with benzalkonium chloride. Rasayan J. Chem, 13(2), 845-853 http://dx.doi.org/10.31788/RJC.2020.1325537.‏
  • 7. Atef, R.; Aboeleneen, N., Abdel Monem, N. 2022. Preparation and characterization of low-cost nanoparticle material using pomegranate peels for brilliant green removal, International Journal of Phytoremediation, 1–11, https://doi.org/10.1080/15226514.2022.2056133.
  • 8. Ayawei, N.; Godwin, D. Wankasi., 2015. Synthesis and sorptionstudies of the degradation of Congo red by Ni-Fe layered double hydroxide, International Journal of Applied Chemical Sciences Research, 13, 1197–1217.
  • 9. Ayesha, K.; Rabia R., Muhammad, I. 2022. Adsorptive Detoxification of Congo Red and Brilliant Green Dyes Using Chemically Processed Brassica Oleracea Biowaste from Waste Water, Adsorption Science & Technology https://doi.org/10.1155/2022/9995335.
  • 10. Badr, S., Isra, S., 2021. Using agricultural waste as biosorbent for hazardous brilliant green dye removal from aqueoussolutions, Journal of Engineering Science and Technology, 16, 3435–3454.
  • 11. Basharat, S.; Rehman, R., Mitu, L. 2021. Adsorptive separation ofbrilliant green dye from water by tartaric acid-treated holarrhenaanti dysenterica and Citrullus colocynthis biowaste, Journal of Chemistry, 18, https://doi.org/10.1155/2021/6636181.
  • 12. Emami, M.; Harun, R.; Mokhtar, M., Zakaria, R. 2018. Potential of Zeolite and Algae in Biomass Immobilization. Biomed Res Int. 6563196, https://doi.org/10.1155/2018/6563196.
  • 13. Eroglu, E.; Smith, M., Raston L. 2015. Biomass and Biofuels from Microalgae. 2. Cham: Springer International Publishing; Application of Various Immobilization Techniques for Algal Bioprocesses. 19–44, https://doi.org/10.1007/978-3-319-16640-7_2.
  • 14. Ghedjemis, A.; Ayeche, R.; Benouadah, A., Fenineche, N. 2021. A new application of hydroxyapatite extracted from dromedary bone: Adsorptive removal of Congo red from aqueous solution. Int. J. Appl. Ceram. Technol. 18, 590-597, https://doi.org/10.1111/ijac.13677.
  • 15. Goh, P.S.; Lau, W.J.; Ismail, A.F.; Samawati, Z.; Liang, Y.Y., Kanakaraju, D. 2022. Microalgae-en-abled wastewater treatment: A sustainable strategy for bioremediation of pesticides. Water, 15(1), 70, https://doi.org/10.3390/w15010070
  • 16. Halbus, A.F.; Salman, J.M.; Lafta, A.J.; Athab, Z.H.; Hasan, F.M.; Kamil, A.M., Hussein, F.H. 2017. Equilibrium, isotherms and thermodynamic studies of congo red adsorption onto Ceratophyllum Demersum, NIScPR Online Periodicals Repository, 24, 82–87, http://nopr.niscpr.res.in/handle/123456789/39754.
  • 17. Huizhong, C. 2018. Recent advances in azo dye degrading enzyme research. Current Protein and Peptide Sciences, 7, 101–111, https://doi.org/10.2174/138920306776359786.
  • 18. Hussain, M.; Rehman, R., Imran, M., 2022. Comparative evaluationof the adsorption performance of citric acid-treatedpeels of Trapa natans and Citrullus lanatus for cationic dyesdegradation from water, Journal of Chemistry, 19, https://doi.org/10.1155/2022/1109376.
  • 19. Hwang, J.; Ghurch, J.; Lee, S.; Park, J., Lee, W, 2016. Use of Microalgaefor Advanced wastewater treatment and sustainable bioenergyGeneration. Environmental Engeneering Science. 33, 882-897, https://doi.org/10.1089/ees.2016.0132.
  • 20.Jawad, A.H. and Abdulhameed, A.S. 2020. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surf. Interfaces. 18, 100422, https://doi.org/10.1016/j.surfin.2019.100422.
  • 21.Jia, S.T.; Sze, Y.L.; Kit, W. Ch.; Man, K.L.; Jun, W.L.; Shih-Hsin, H., Pau, L. Sh. 2020. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids, Bioengineered, 11:1, 116-129, https://doi.org/10.1080/21655979.2020.1711626
  • 22.Juda, S.A., Sala, M.M., Salman, J.M. 2019. Efficiency of Green Algae Chlorella vulgaris in Remediation of Polycyclic Aromatic Hydrocarbon (Anthracene) from Culture Media .Baghdad Science Journal, 16, 543-549, https://doi.org/10.21123/bsj.2019.16.3.0543.
  • 23.Jun H.; Hao L., Pratyoosh S., Weitie L., Jianfei Luo,. 2020. Nitrogen and phosphorus removals by the agar-immobilized Chlorella sacchrarophila with long-term preservation at room temperature, Chemosphere. 251, 126406 , https://doi.org/10.1016/j.chemosphere.2020.126406.
  • 24. Kassimi, A.; Achour, Y.; El Himri, M.; Laamari, M. R., El Haddad, M., 2021. Process optimization of high surface area activated carbon prepared from Cucumismelo by H3 PO4 activation for the removal of cationic and anionic dyes using full factorial design. biointerface. Res. Appl. Chem. 11, 12662-12679, https://doi.org/10.33263/BRIAC115.1266212679.
  • 25. Kowanga, K.; Gatebe, E.; Mauti, G., Mauti, E., 2016. Kinetic sorption isotherms pseudo-first-order model and pseudo-second-order model studies of cu (II) and Pb (II) usingdefatted Moringa oleifera seed powder. The Journal of Phytopharmacology, 5, 71–78, https://repository.maseno.ac.ke/handle/123456789/5379.
  • 26. Kube, M.; Mohseni, A.; Fan, L., Roddick, F. 2018. Impact of alginate selection for wastewater treatment by immobilised Chlorella vulgaris. Chemical Engineering Journal, 358, 1601-1609, https://doi.org/10.1016/j.cej.2018.10.065 .
  • 27. Laamari, M. and El Haddad, M., 2021. Insight into adsorption mechanism of congo red dye onto bombax buonopozense bark activated-carbon using Central composite design and DFT studies. Surf. Interfaces. 23, 100977, https://doi.org/10.1016/j.surfin.2021.100977.
  • 28. Lili, J.; Wendong, S.; Danyi, W.; Dongjiao, J.; Lu, C.; Yaning, W., Jian, G., Hailong, Z., 2019. Modified mussel shell powder for microalgae immobilization to remove N and P from eutrophic wastewater, Bioresource Technology, 284, 36-42, https://doi.org/10.1016/j.biortech.2019.03.112.
  • 29. Litefti, K.; Freire, M.S.; Stitou, M., González-Á.J. 2019. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 9(1), 16530, https://doi.org/10.1038/s41598-019-53046-z.
  • 30. Mahalakshmi, S.,; Lakshmi, D.; & Menaga, U. 2015. Biodegradation of Different Concentration of dye (Congo red dye) by using Green and Blue Green Algae, Int. J. Environ. Res. 9, 735-744.
  • 31. Nair, V.K., Selvaraju, K., Samuchiwal, S., Naaz, F.; Malik, A., Ghosh, P. 2023. Phycoremediation of synthetic dyes laden textile wastewater and recovery of bio-based pigments from residual biomass: An Approach towards Sustainable Wastewater Management. Processes, 11(6), 1793, https://doi.org/10.3390/pr11061793
  • 32. Naji, N.S.; Salman, J.M., 2019. effect of chlorellavulgaris in decolorization of congo red dye from aqueouse solutions Biochem. Cell. Arch. 19, 4169-4174, https://doi.org/10.35124/bca.2019.19.2.4169.
  • 33. Obaid, Z.H.; Jasim M.S. & Nuha F.K. 2023b. Review on Toxicity and Removal of Pharmaceutical Pollutants Using Immobilised Microalgae.Ecol. Eng. Environ. Technol. 2023; 6:44–60, https://doi.org/10.12912/27197050/166013.
  • 34. Obaid, Z. H.; Nuha F. K., & Jasim M. S. 2023a . The Role of Chlorella vulgaris in Reducing Some Pharmaceutical Wastes Toxicity in Clam Pseudodontopsis euphraticus. Baghdad Science Journal, https://dx.doi.org/10.21123/bsj.2023.8214.
  • 35. Oladoye, P.O.; Bamigboye, O.M.; Ogunbiyi, O.D., Akano, M.T. 2022. Toxicity and decontamination strategies of Congo red dye. Groundwater for Sustainable Development, 100844, https://doi.org/10.1016/j.gsd.2022.100844.
  • 36. Patel, S. and Tiwari, K,. 2015. Fluoranthene and Acenaphthene Metabolism by Chlorella vulgaris Identity of Intermediates Formed During Degradation and its Growth Effect. International Journal of Recent Research and Review, 8, 26-33.
  • 37. Pavithra, G.; Kumar, S.; Jaikumar, V., Rajan, S., 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 75, 1-19, https://doi.org/10.1016/j.jiec.2019.02.011.
  • 38. Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M., Stanier RY 1979. J.Gen. Microbiol., 111(1): 1–61, https://doi.org/10.1099/00221287-111-1-1
  • 39. Rubangakene, N.O., Elwardany, A., Fujii, M., Sekiguchi, H., Elkady, M., Shokry, H. 2023. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chemical Engineering Research and Design, 189, 636-651, https://doi.org/10.1016/j.‏.2022.12.003.cherd
  • 40. Salem, O.M., Abdelsalam, A., Boroujerdi, A. 2021. Bioremediation Potential of Chlorella vulgaris and Nostoc paludosum on azo Dyes with Analysis of Metabolite Changes. Baghdad Science Journal, 18(3), 0445-0445, I: http://dx.doi.org/10.21123/‏.2021.18.3.0445.bsj
  • 41. Salman, J., Kaduem, N., Juda, S. 2022. Algal immobilization as a green technology for domestic wastewater treatment, IOP Publishing 1088, 012005. http://dx.doi.org/10.1088/1755-1315/1088/1/012005.
  • 42. Samiyammal, P., Kokila, A., Pragasan, L. 2022. Adsorptionof brilliant green dye onto activated carbon prepared fromcashew nut shell by KOH activation: studies on equilibriumisotherm Environmental Research. 212, https://doi.org/10.1016/j.envres.2022.113497.
  • 43. Sarma, G.K., Sen Gupta, S., Bhattacharyya, K.G. 2019. Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acidtreated kaolinite: kinetics, isotherm and mechanistic study. SN Appl. Sci. 1, 211, https://doi.org/10.1007/s42452-019-0216-y.
  • 44. Shantanu, B., Palas B.T., Kumar S., Chiranjib B., Soubhik K.B. 2019. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies, Biochemical Engineering Journal, 149, 107241, https://doi.org/10.1016/j.bej.2019.107241.
  • 45. Vasilieva, G., Lobakova, S., Lukyanov, A., Solovchenko, E., 2016. Immobilized microalgae in biotechnology.Moscow University Biological Sciences Bulletin. 71, 170–176, https://doi.org/10.3103/S0096392516030135.
  • 46. Virk, K., Thakur, P., Sharma, I., Swati, C., Chauhan, A., Li, X., Salama, S., Kulshrestha, S. 2020. A moringa oleifera seeds-based filter for efficient removal of congo red from aqueous medium. Desalination. Water. Treat. 206, 371-384, http://dx.doi.org/10.5004/dwt.2020.26251.
  • 47. Yazid, Y.; Achour, A.; El Kassimi, I.; Nadir, M.; El Himri,. M., Haddad, M. 2021. Removal of Congo Red from Aqueous Solution Using Cuttlefish Bone Powder, Phys. Chem. Res. 9, 565-577, 10.22036/PCR.2021.278943.1901.
  • 48. Yifan G., Meng W., Kshitija S., Shashank S.K., Leonard H.R., Shaily M. 2022. Decolorization and detoxification of synthetic dye compounds by laccase immobilized in vault nanoparticles, Bioresource Technology, 351, 127040, https://doi.org/10.1016/j.biortech.2022.127040.
  • 49. Yun, H., Kim, Y., Yoon HS. 2020 Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon. 23;6(7):e04447. doi: 10.1016/j.heliyon.2020.e04447.
  • 50. Zamora, M., Jerónimo, F., Horcasitas, M., 2015. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environ Sci Pollut Res, 22, 10811-10823, https://doi.org/10.1007/s11356-015-4277-1.
  • 51. Zewde, D. and Geremew, B. 2022. Removal of Congo red using Vernonia amygdalin a leaf powder: optimization, isotherms, kinetics, and thermodynamics studies Environmental Pollutants and Bioavailability, 34, 88–101, https://doi.org/10.1080/26395940.2022.2051751.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39c12fb1-398f-417e-881f-631075610bc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.