PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformations at the craniofacial complex depending on the HYRAX device design

Identyfikatory
Warianty tytułu
PL
Wpływ rodzaju aparatu HYRAX na odkształcenia zespołu czaszkowo-twarzowego
Języki publikacji
EN
Abstrakty
EN
Finite element analysis of the stress-strain state of a human skull after the expansion of the maxilla with using different designs orthodontic appliance HYRAX was carried out. Finite element model of craniofacial complex and supporting teeth are obtained on the basis of tomographic data. An orthodontic appliance differs by the localization of the screw relative to the palate. The design with location of the rods and screw of device in the same horizontal plane as well as the design with the location of the screw at the 8 mm closer to the palate relative to the horizontal localization are considered. Deformations at the intact skull and a skull with a cleft palate were derived. The regions of the largest deformations of the skull bone structures are defined for different orthodontic device designs. Effect of the orthodontic device design on displacements of the supporting teeth is analyzed. The results can be used to design devices HYRAX for the orthodontic correction and treatment of the cross-bite patients.
PL
Analizę stanu naprężeń oraz odkształceń ludzkiej czaszki po rozszczepie szczęki górnej za pomocą różnych aparatów ortodontycznych wykonano za pomocą metody elementów skończonych. Model numeryczny MES zespołu twarzowo-czaszkowego oraz zębów podporowych uzyskano na podstawie danych tomograficznych. Przyrządy ortodontyczne różnią się lokalizacją śruby względem podniebienia. Uwzględniano konstrukcję złożoną z prętów i śrub w tej samej płaszczyźnie poziomej oraz konstrukcję ze śrubą zlokalizowaną 8 mm bliżej podniebienia względem lokalizacji poziomej. Otrzymano odkształcenia w nienaruszonej czaszce oraz w czaszce z rozszczepieniem podniebienia. Miejsca największych odkształceń struktury kości czaszki zdefiniowano dla różnych projektów aparatów ortodontycznych. Analizowano wpływ konstrukcji aparatu ortodontycznego na przemieszczenia zębów podporowych. Wyniki mogą być wykorzystane w projektowaniu aparatów HYRAX do ortodontycznej korekcji i w leczeniu pacjentów ze zgryzem krzyżowym.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus
  • Rzeszow University of Technology
autor
  • Belarusian State Medical University
Bibliografia
  • [1] Boryor A., Geigera M., Hohmann A., Wunderlich A., Sander C., Sander F.M., Sander F.G.: Stress distribution and displacement analysis during an intermaxillary disjunction. A three-dimensional FEM study of a human skull, J. Biomechanics, 41 (2008), 376-382.
  • [2] Braun S., Bottrel J.A., Lee K.G., Lunazzi J.J., Legan H.L.: The biomechanics of maxillary sutural expansion, American J. Orthodontics Dentofacial Orthopedics, 118 (2000), 257-261.
  • [3] Chaconas S.J., Caputo A.A.: Observation of orthopedic force distribution produced by maxillary orthodontic appliances, American J. Orthodontics Dentofacial Orthopedics, 82 (1982), 492-501.
  • [4] Chung C.H., Font B.: Skeletal and dental changes in the sagittal, vertical, and transverse dimensions after rapid palatal expansion, American J. Orthodontics Dentofacial Orthopedics, 126 (2004), 569-575.
  • [5] Gautam P., Zhao L., Patel P.: Biomechanical response of the maxillofacial skeleton to transpalatal orthopedic force in a unilateral palatal cleft, Angle Orthodontist, 81 (2011), 503-509.
  • [6] Ghoneima A., Abdel-Fattah E., Hartsfield J., El-Bedwehi A., Kamel A., Kulaf K.: Effects of rapid maxillary expansion on the cranial and circummaxillary sutures, American J. Orthodontics Dentofacial Orthopedics, 140 (2011), 510-519.
  • [7] Han U.A., Kim Yo., Park J.U.: Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion, J. Cranio-Maxillofacial Surgery, 37 (2009), 145-154.
  • [8] Holberg C., Holberg N., Schwenzer K., Wichelhaus A., Rudzki-Janson I.: Biomechanical analysis of maxillary expansion in CLP patients, Angle Orthodontist, 77 (2007), 280-287.
  • [9] Isaacson R.J., Ingram A.H.: Forces produced by rapid maxillary expansion. Part II. Forces present during treatment, Angle Orthodontist, 34 (1964), 261-270.
  • [10] Isaacson R.J., Wood J.L., Ingram A.H.: Forces produced by rapid maxillary expansion. Part I. Design of the force measuring system, Angle Orthodontist, 34 (1964), 256-260.
  • [11] Iseri H., Tekkaya A.E., Öztan Ö., Bilgiç S.: Biomechanical effects of rapid maxillary expansion on the craniofacial skeleton, studied by the finite element method, European J. Orthodontics, 20 (1998), 347-356.
  • [12] Jafari A., Shetty K.S., Kumar M.: Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forcesa three-dimensional FEM study, Angle Orthodontist, 73 (2003), 12-20.
  • [13] Kragt G., Duterloo H.S., Ten Bosch J.J.: The initial reaction of a macerated human skull caused by orthodontic cervical traction determined by laser metrology, American J. Orthodontics Dentofacial Orthopedics, 81 (1982), 49-56.
  • [14] Landes C.A., Laudermann K., Petruchin O., Mack M.G., Kopp S., Ludwig B., Sader R.A., Seitz O.: Comparison of bipartite versus tripartite osteotomy for maxillary transversal expansion using 3-dimensional preoperative and postexpansion computed tomography data, J. Oral Maxillofacial Surgery, 67 (2009), 2287-2301.
  • [15] Lee H., Ting K., Nelson M., Sun N., Sung S.J.: Maxillary expansion in customized finite element method models, American J. Orthodontics Dentofacial Orthopedics, 136 (2009), 367-374.
  • [16] Ludwig B., Baumgaertel S., Zorkun B., Bonitz L., Glasl B., Wilmes B., Lisson J.: Application of a new viscoelastic finite element method model and analysis of miniscrew-supported hybrid hyrax treatment, American J. Orthodontics Dentofacial Orthopedics, 143 (2013), 426-435.
  • [17] Majourau A., Nanda R.: Biomechanical basis of vertical dimension control during rapid palatal expansion therapy, American J. Orthodontics Dentofacial Orthopedics, 106 (1994), 322-328.
  • [18] Memikoglu T.U.T., Iseri H.: Effects of a bonded rapid maxillary expansion appliance during orthodontic treatment, Angle Orthodontist, 69 (1999), 251-256.
  • [19] Pan X., Qian Y., Yu J., Wang D., Tang Y., Shen G.: Biomechanical effects of rapid palatal expansion on the craniofacial skeleton with cleft palate: a three-dimensional FE analysis, Cleft Palate-Craniofacial J., 44 (2007), 149-154.
  • [20] Provatidis C., Georgiopoulos B., Kotinas A., McDonald J. P.: On the FEM modeling of craniofacial changes during rapid maxillary expansion, Medical Engng. Physics, 29 (2007), 566-579.
  • [21] Sander C., Hüffmeier S., Sander F. M., Sander F. G.: Initial results regarding force exertion during rapid maxillary expansion in children, J. Orofacial Orthopedics, 67 (2006), 19-26.
  • [22] Susami T., Kuroda T., Amagasa T.: Orthodontic treatment of a cleft palate patient with surgically assisted rapid maxillary expansion, Cleft Palate-Craniofacial J., 33 (1996), 445-449.
  • [23] Tanne K., Sakuda M.: Biomechanical and clinical changes of the craniofacial complex from orthopedic maxillary protraction, Angle Orthodontist, 61 (1991), 145-152.
  • [24] Timms D.J.: A study of basal movement with rapid maxillary expansion, American J. Orthodontics Dentofacial Orthopedics, 77 (1980), 500-507.
  • [25] Wang D., Cheng L., Wang C., Qian Y., Pan X.: Biomechanical analysis of rapid maxillary expansion in the UCLP patient, Medical Engineering and Physics, 31 (2009), 409-417.
  • [26] Weissheimer A., Macedo de Menezes L., Mezomo M., Dias D.M., Santayana de Lima E.M., Rizzatto S.M.D.: Immediate effects of rapid maxillary expansion with Haas-type and hyrax-type expanders: A randomized clinical trial, American J. Orthodontic Dentofacial Orthopedics, 140 (2011), 366-376.
  • [27] Wood S.A., Strait D.S., Dumont E.R., Ross C.F., Grosse I.R.: The effects of modeling simplifications on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments, Journal of Biomechanics, 44 (2011), 1831-1838.
  • [28] Zimring J.F., Isaacson R.J.: Forces produced by rapid maxillary expansion. Part III. Forces present during retention, Angle Orthodontist, 35 (1965), 178-186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39c04c80-4f7c-4e72-b06a-3221e857c53f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.