PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological challenges in manufacturing of vacuum gauge thermionic cathode using thick-film technology

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the development of a technological challenges of manufacturing the planar ceramic vacuum sensor based on the principles of hot-cathode ionization in the Bayard-Alpert configuration. The goal is to simplify the technological process by utilizing planar platinum structures with gold electrical paths instead of 3-dimensional structures. Various methods were tested, including the use of carbon-based SVM (Sacrifice Volume Materials) materials, but without success. Wet-etching using potassium hydroxide on Al2O3 substrates showed promise results. The findings highlight the challenges and progress made in developing the thermo-emittercomponent of the vacuum sensor.
Słowa kluczowe
Wydawca
Rocznik
Strony
126--139
Opis fizyczny
Bibliogr. 38 poz., rys., tab
Twórcy
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and Microsystems Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and Microsystems Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and MicrosystemsWrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and MicrosystemsWrocław, Poland
  • Nanores Sp. z o. o. Sp. k. Wrocław, Poland
  • Nanores Sp. z o. o. Sp. k. Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and MicrosystemsWrocław, Poland
Bibliografia
  • [1] Sullivan JJ. Development of Variable Capacitance Pressure Transducers for Vacuum Applications. J Vac Sci Technol A. 1985; 3: 1721–1730, doi:10.1116/1.573008
  • [2] Sun J; Hu D, Liu Z, Middelburg LM, Vollebregt S, Sarro PM, Zhang G. Low Power AlGaN/GaN MEMS Pressure Sensor for High Vacuum Application. Sens Actuators A Phys. 2020; 314: 112217, doi:10.1016/j.sna.2020.112217
  • [3] Kang S, Qian W, Liu R, Yu H, Zhu W, Liao X, Wang F, Huang W, Dong C. Miniature Vacuum Sensor Based on Gas Adsorptions from Carbon Nanotube Field Emitters. Vacuum. 2023; 207: 111663, doi:10.1016/j.vacuum.2022.111663
  • [4] Dawood NS, Zayer MQ, Jawad MF. Preparation and Characteristics Study of Porous Silicon for Vacuum Sensor Application. Karbala Int J Mod Sci. 2022; 8: 105–113, doi:10.33640/2405-609X.3209
  • [5] Zhang Y, Massoud-Ansari S, Meng G, Kim W, Najafi N. An Ultra-Sensitive, High-Vacuum Absolute Capacitive Pressure Sensor. In Proceedings of the Technical Digest. MEMS 2001. 14th IEEE Int Conf Micro Electro Mech Syst, 2001 Jan 21-25, 166–169, Interlaken (Switzerland).
  • [6] Górecka-Drzazga A. Miniature and MEMS-Type Vacuum Sensors and Pumps. Vacuum. 2009; 83: 1419–1426, doi:10.1016/j.vacuum.2009.05.003
  • [7] Wang S, Feng Y. Micro Capacitive Vacuum Sensor Based on MEMS. In Proceedings of the 2010 IEEE 5th Int Conf Nano/Micro Eng Mol Syst; 2010 Jan 20-23, 1160–1164, Xiamen (China).
  • [8] Liu C, Froemel J, Chen J, Tsukamoto T, Tanaka S. Laterally Vibrating MEMS Resonant Vacuum Sensor Based on Cavity-SOI Process for Evaluation of Wide Range of Sealed Cavity Pressure. Microsyst Technol. 2019; 25: 487–497, doi:10.1007/s00542-018-3984-1
  • [9] Madey TE. Early Applications of Vacuum, from Aristotle to Langmuir. J Vac Sci Technol A. 1984; 2: 110–117, doi:10.1116/1.572681
  • [10] Jousten K. Gauges for Fine and High Vacuum. CAS – CERN Accelerator School?: Vacuum in Accelerators. 2007; 65–86, doi:10.5170/CERN-2007-003.65
  • [11] Halas, A. Techn. Prózni; Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, 2017.
  • [12] Roth A. Vacuum Technol. 3rd ed.; Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo: Elsevier Sci. B.V, 1990.
  • [13] McMillen B, Jewart C, Buric M, Chen KP, Lin Y, Xu W. Fiber Bragg Grating Vacuum Sensors. Appl Phys Lett. 2005; 87: 234101, doi:10.1063/1.2140082
  • [14] Mironov AE, Yu N, Park S, Tuggle M, Gragg J, Kucera C, Hawkins T, Ballato J, Eden JG, Dragic P. All Optical Fiber Thermal Vacuum Gauge. J Phys Photonics. 2020; 2(1): 014006, doi:10.1088/2515-7647/ab60c5
  • [15] Xu J, Pickrell GR, Wang X, Yu B, Cooper KL, Wang A. Vacuum-Sealed High Temperature High Bandwidth Fiber Optic Pressure and Acoustic Sensors. Sensors for Harsh Environments II. Proc SPIE. 2005; 5998: 67–72, doi: 10.1117/12.630802
  • [16] Kendall BRF, Drubetsky E. Cold Cathode Gauges for Ultrahigh Vacuum Measurements. J Vac Sci Technol A. 1997; 15: 740–746, doi:10.1116/1.580813
  • [17] Peacock RN, Peacock NT, Hauschulz DS. Comparison of Hot Cathode and Cold Cathode Ionization Gauges. J Vac Sci Technol A. 1991; 9: 1977–1985, doi:10.1116/1.577439
  • [18] Li D, Jousten K. Comparison of the Stability of Hot and Cold Cathode Ionization Gauges. J Vac Sci Technol A. 2003; 21: 937–946, doi:10.1116/1.1578654
  • [19] Huang JX, Chen J, Deng SZ, Xu NS. A Bayard-Alpert Ionization Gauge Using Carbon Nanotube Cold Cathode. In Proceedings of the 2006 19th Int Vacuum Nanoelectronics Conf, 2006 Jul 17-20; Guilin (China).
  • [20] Chung KH, Hong SS, Shin YH, Lim JY, Lee SK, Woo SY. Hot Cathode Ionization Gauge Calibration with the KRISS Ultra-High Vacuum Standards. Metrologia. 1999; 36: 675–679, doi:10.1088/0026-1394/36/6/37
  • [21] Bayard-Alpert Gauge Filaments: Tungsten or Thorina? Available online: https://www.thinksrs.com/downloads/pdfs/applicationnotes/IG1filamentsapp.pdf (accessed on January 19, 2024).
  • [22] Baptist R, Bieth C, Py C. A Bayard-Alpert Vacuum Gauge with Microtips. In Proceedings of the IVMC ‘95. Eighth International Vacuum Microelectronics Conference. Technical Digest, 1995 Jul 30–Aug 3, 524–528; Portland (USA).
  • [23] Golonka LJ. New Application of LTCC Technology. In: 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005 May 19-20, 162–166, Wiener Neustadt (Austria), doi:10.1109/ISSE.2005.1491020
  • [24] Peterson KA, Knudson RT, Garcia EJ, Patel KD, Okan-dan M, Ho CK, James CD, Rohde SB Rohrer BR, Smith F. LTCC in Microelectronics, Microsystems, and Sensors. In Proceedings of the 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems; Vol. 2, 2008 Jun 19-21, 2008, Poznañ (Poland).
  • [25] Jantunen H, Kangasvieri T, Vähäkangas J, Leppävuori S. Design Aspects of Microwave Components with LTCC Technique. J Eur Ceram Soc. 2003; 23: 2541–2548, doi:10.1016/S0955-2219(03)00155-9
  • [26] Grall S, Santawitee O, Dufour I, Aubry V, Debéda H. New Corn-Based Sacrificial Layer for MEMS Based on Screen-Printed PZT Ceramics. Sens Actuators A Phys. 2020; 304:111826. doi:10.1016/j.sna.2019.111826
  • [27] Malecha K, Maeder T, Jacq C, Ryser P. Structuration of the Low Temperature Co-Fired Ceramics (LTCC) Using Novel Sacrificial Graphite Paste with PVA–Propylene Glycol–Glycerol–Water Vehicle. Microelectronics Reliability. 2011; 51: 805–811. doi:10.1016/j.microrel.2010.11.009
  • [28] Malecha K, Maeder T, Jacq C. Fabrication of Membranes and Microchannels in Low-Temperature Co-Fired Ceramic (LTCC) Substrate Using Novel Water-Based Sacrificial Carbon Pastes. J Eur Ceram Soc. 2012; 32: 3277–3286. doi:10.1016/j.jeurceramsoc.2012.04.036
  • [29] Maeder T, Jacq C, Fournier Y, Hraiz W, Ryser P. Structuration of Thin Bridge and Cantilever Structures in Thick-Film Technology Using Mineral Sacrificial Materials. In Proceedings of the 5rd IMAPS/ACerS International Conference on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), 2009 Apr 21–23, Denver (USA).
  • [30] Hrovat M, Belavic D, Cilensek J, Drnovsek S, Holc J, Jerlah M. Investigation of Sacrificial Layers for 3D LTCC Structures and Some Preliminary Results. In Proceedings of the 2009 32nd International Spring Seminar on Electronics Technology; 2009 May 13-17, Brno (Czech Republic)
  • [31] Dąbrowski A, Nawrot W, Czok M, Babij M, Bielówka P, Malecha K. LTCC Strip Electrode Arrays for Gas Electron Multiplier Detectors. Sensors. 2022; 22: 623. doi:10.3390/s22020623
  • [32] Tachi S, Tsujimoto K, Arai S, Kure T. Low-Temperature Dry Etching. J Vac Sci Technol A. 1991; 9: 796–803. doi:10.1116/1.577364
  • [33] Knotter DM. The Chemistry of Wet Etching. In Handbook of Cleaning in Semiconductor Manufacturing; Wiley, 2010; pp. 95–141.
  • [34] Nojiri K. Dry Etching Technology for Semiconductors. Tokyo: Springer Cham; 2015.
  • [35] Zhuang D, Edgar JH. Wet Etching of GaN, AlN, and SiC: A Review. Mater Sci Eng R. 2005; 48: 1–46. doi:10.1016/j.mser.2004.11.002
  • [36] Ameen JG, McBride DG, Phillips GC. Etching of High Alumina Ceramics to Promote Copper Adhesion; J Electrochem Soc. 1973; 120(11): 1518. doi: 10.1149/1.2403295
  • [37] Pal P, Sato K. Fabrication Methods Based on Wet Etching Process for the Realization of Silicon MEMS Structures with New Shapes. Microsyst Technol. 2010; 16: 1165–1174. doi:10.1007/s00542-009-0956-5
  • [38] International Labour Organization International Chemical Safety Cards (ICSCs), Potassium Hydrooxide. Available online: https://www.ilo.org/dyn/icsc/showcard.home (accessed on January 19, 2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39bcc680-308c-48af-8c77-61a0f24038e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.