PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary assessment of the susceptibility of selected animal waste to stabilization in the Fenton process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stabilization of post-slaughter soft animal waste with Fenton’s reagent has been studied. Crude waste was characterized by a high content of fat (581.8 g/kg d.m.) and proteins (264.5 g/kg d.m.), and the share of organic mass constituting 93.6% of d.m. The stabilization was investigated in two reaction variants using various dozes of oxidant (100–1000 cm3/kg/d.m.) and Fe2+:H2O2 molar ratios (1:10, 2:10 and 4:10), for a period of 1 day. During the stabilization, an increase in the solubility of FeSO4·7H2O in waste was observed, probably due to the binding of Fe2+ ions in ferroorganic ligands. The dynamics of the process and the efficiency of the decomposition of organic compounds increased with increased doses of reagents. The biggest loss of organic mass was recorded for the stabilization variant without initial acidification of the reaction environment. The studies confirm the possibility of disregarding the preacidification step of stabilized waste without adversely affecting the oxidation efficiency of organic compounds. A high degree of reduction in protein and fat concentrations with a low organic mass loss are evidence of incomplete oxidation of these compounds.
Rocznik
Strony
5--20
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] PÁRAMO-VARGAS J., GRANADOS S.G., MALDONADO-RUBIO M.I., PERALTA-HERNÁNDEZ J.M., Up to 95% reduction of chemical oxygen demand of slaughterhouse effluents using Fenton and photo-Fenton oxidation, Environ. Chem. Lett., 2016, 14 (1), 149–154.
  • [2] SADECKA Z., SUCHOWSKA-KISIELEWICZ M., The possibility of using organic substrates in the fermentation process, Rocz. Ochr. Środ., 2016, 18, 400–413 (in Polish).
  • [3] Regulation (EC) No. 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No. 1774/2002 (Animal By-Products Regulation).
  • [4] CASCAROSA E., GEA G., ARAUZO J., Thermochemical processing of meat and bone meal. A review, Ren. Sust. En. Rev., 2012, 16 (1), 942–957.
  • [5] ANDRIAMANOHIARISOAMANANA F.J., SAIKAWA A., KAN T., QI G., PAN Z., YAMASHIRO T., IWASAKI M., IHARA I., NISHIDA T., UMETSU K., Semi-continuous anaerobic co-digestion of dairy manure, meat and bone meal and crude glycerol. Process performance and digestate valorization, Ren. En., 2018, 128, 1–8.
  • [6] COSTA M.S.S.M., BERNARDI F.H., COSTA L.A.M., PEREIRA D.C., LORIN H.E.F., ROZATTI M.A.T., CARNEIRO L.J., Composting as a cleaner strategy to broiler agro-industrial wastes. Selecting carbon source to optimize the process and improve the quality of the final compost, J. Clean Prod., 2017, 142, 2084–2092.
  • [7] WANG Y., SUN Y., LI W., TIAN W., IRINI A., High performance of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral condition with a low stoichiometry of H2O2. Kinetic study and mechanism, Chem. Eng. J., 2015, 267, 1–8.
  • [8] SANDRIATY R., PRIADI C., KURNIANINGSIH S., ABDILLAH A., Potential of biogas production from anaerobic co-digestion of fat, oil and grease waste and food waste, E3S Web Conf., 2018, 67, 1–5.
  • [9] ZAWIEJA I., WOLSKI P., Effect of chemical-thermal modification of excess sludge on the volatile fatty acids generation during methane fermentation process, Rocz. Ochr. Środ., 2013, 15, 2054–2070 (in Polish).
  • [10] FENTON H.J.H., Oxidation of tartaric acid in presence of iron, J. Chem. Soc. Trans.,1894, 65, 899–910.
  • [11] BARBUSIŃSKI K., Intensification of wastewater treatment and stabilization of excess sludges using the Fenton reagent, Zeszyty Naukowe Politechniki Śląskiej, Gliwice 2004 (in Polish).
  • [12] WANG J.L., XU L.J., Advanced oxidation processes for wastewater treatment. Formation of hydroxyl radical and application, Crit. Rev. Environ. Sci. Technol., 2012, 42 (3), 251–325.
  • [13] EBRAHIEM E.E., AL-MAGHRABI M.N., MOBARKI A.R., Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology, Arab. J. Chem., 2017, 10, 1674–1679.
  • [14] JANDA A., MARCINKOWSKI T., Fenton process modification possibilities for oxidation effectiveness of hard degradable organic pollutants, Ochr. Środ., 2019, 41 (1), 47–53 (in Polish).
  • [15] AHMAD M., SIMON M.A., SHERRIN A., TUCCILLO M.E., ULLMAN J.L., TEEL A.L., WATTS R.J., Treatment of polychlorinated biphenyls in two surface soils using catalyzed H2O2 propagations, Chemosphere, 2011, 84 (7), 855–862.
  • [16] LEMAIRE J., MORA V., FAURE P., HANNA K., BUÈS M., SIMONNOT M.-O., Chemical oxidation efficiency for aged, PAH-contaminated sites. An investigation of limiting factors, J. Environ. Chem. Eng., 2019, 7 (3), 103061.
  • [17] CAO M., WANG L., WANG L., CHEN J., LU X., Remediation of DDTs contaminated soil in a novelFenton-like system with zero-valent iron, Chemosphere, 2013, 90 (8), 2303–2308.
  • [18] BARBUSIŃSKI K., Advanced oxidation in the treatment of selected industrial wastewater, Wydawnictwo Politechniki Śląskiej, Gliwice 2013 (in Polish).
  • [19] PRAZERES A.R., CARVALHO F., RIVAS J., Fenton-like application to pretreated cheese whey wastewater, J. Environ. Manage., 2013, 129, 199–205.
  • [20] SMAOUI Y., MSEDDI S., AYADI N., SAYADI S., BOUZID J., Evaluation of influence of coagulation /flocculation and Fenton oxidation with iron on landfill leachate treatment, Environ. Prot. Eng., 2019, 45 (1), 139–153.
  • [21] KRZEMIENIEWSKI M., DĘBOWSKI M., SIKORA J., Method of wastewater with large blood concentration treatment with application of Fenton reagent, Rocz. Ochr. Środ., 2005, 7, 99–115 (in Polish).
  • [22] Official Methods of Ananlysis, AOAC International, 18th Ed., Maryland, 2005.
  • [23] BARBUSIŃSKI K., FAJKIS S., Optimization of the Fenton oxidation of wastewater generated by rape oil soapstock splitting, Environ. Prog. Sustain. En., 2010, 30 (4), 620–631.
  • [24] FARINELLI G., MINELLA M., PAZZI M., GIANNAKIS S., PULGARIN C., VIONE D., TIRAFERRI A., Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments, J. Hazard. Mater., 2020, 393, 122413.
  • [25] LI W., WANG Y., IRINI A., Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV-Fenton and identification of reactive oxygen species, Chem. Eng. J., 2014, 244, 1–8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39b83517-0e26-44df-8441-4e1fc09b93ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.