PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of CO2 adsorption capacity with a nano-CaO synthesized by chemical combustion/ball milling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption of CO2 on a nano-calcium oxide (nano-CaO) adsorbent was investigated under different conditions of temperature and supply pressure, considering kinetic, isotherm, and thermodynamic parameters. CaO is a crystalline material with a high surface area and nanosized particles with high porosity, which showed rapid initial CO2 adsorption rates in the moderate temperature range studied. The adsorption was well described by the pseudo-second-order and the intraparticle diffusion kinetic models. The Langmuir isotherm model fitted the experimental data well, indicating a monolayer-type process. The thermodynamic parameters revealed that the CO2/nano-CaO adsorption was endothermic, not spontaneous, and proceeded via physical and chemical processes. The activation energy value confirmed that the mechanism involved is a chemical process. In addition, the nano-CaO adsorbent could be regenerated five times without any significant loss of performance or properties. All the obtained results reveal that this porous nanoadsorbent has huge potential to be applied for CO2-capture technologies on a large scale.
Wydawca
Rocznik
Strony
257--269
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Instituto Nacional de Investigaciones Nucleares, Departamento de Química, Carretera México-Toluca S/N, La Marquesa,Ocoyoacac, Estado de México C. P. 52750, México
  • Instituto Nacional de Investigaciones Nucleares, Departamento de Química, Carretera México-Toluca S/N, La Marquesa,Ocoyoacac, Estado de México C. P. 52750, México
Bibliografia
  • [1] Granados-Correa F, Bonifacio-Martínez J, Hernández-Mendoza H, Bulbulian S. Capture of CO2 on γ-Al2O3 materials prepared by solution-combustion and ball-milling processes. J Air Waste Manage Assoc. 2016;66:643–54.
  • [2] Azmi AA, Aziz MAA. Mesoporous adsorbent for CO2 capture applications under mild condition: a review. J Environ Chem Eng. 2019;7:103022.
  • [3] Billo T, Shown I, Anbalagan AK, Effendi TA, Sabbah A, Fu F, et al. A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity. Nano Energy. 2020;72:104717.
  • [4] Gouveia LGT, Agustini CB, Perez-Lopez OW, Gutterres M. CO2 adsorption using solids with different surface and acid-base properties. J Environ Chem Eng. 2020;8:103823.
  • [5] Huang CL, Wang PY, Li YY. Fabrication of electrospun CO2 adsorption membrane for zinc-air battery application. Chem Eng J. 2020;395:125031.
  • [6] Garip M, Gizli N. Ionic liquid containing amine-based silica aerogels for CO2 capture by fixed bed adsorption. J Molecular Liquids. 2020;310:113227.
  • [7] Sayari A, Belmabkhout Y, Serna-Guerrero R. Flue gas treatment via CO2 adsorption. Chem Eng J. 2011;171:760–74.
  • [8] Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854.
  • [9] Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci. 2011;4:42–55.
  • [10] Romeo IM, Lara Y, Lisbona P, Martínez A. Economical assessment of comparative enhanced limestone for CO2 capture cycles in powder plants. Fuel Process Technol. 2009;90:803–11.
  • [11] Zhang X, Liu W, Zhou S, Li Z, Sun J, Hu Y, et al. A review on granulation of CaO-based sorbent for carbon dioxide capture. Chem Eng J. 2022;446:136880.
  • [12] Khine EE, Koncz-Horvath D, Kristaly F, Ferenczi T, Karacs G, Baumli P, et al. Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. J Nanoparticle Res. 2022;24:139.
  • [13] Sun H, Wang J, Liu X, Shen B, Parlett CMA, Adwek G, et al. Fundamental studies of carbon capture using CaO-based materials. J Mater Chem A. 2019;7:9977–87.
  • [14] Sun H, Wu C, Shen B, Zhang X, Zhang Y, Huang J. Progress in the development and application of CaO-based adsorbents for CO2 capture – A review. Mater Today Sustain. 2018;1–2:1–27.
  • [15] Zhao B, Ma L, Shi H, Liu K, Zhang J. Calcium precursor from stirring processes at room temperature for controllable preparation of nano-structure CaO sorbents for high-temperature CO2 adsorption. J CO2 Util. 2018;25:315–22.
  • [16] Ammendola P, Raganati F, Chirone R. CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed. Thermodynamics and kinetics. Chem Eng J. 2017;322:302–13.
  • [17] Kavosh M, Patchigolla K, Oakey JE, Anthony EJ, Champagne SR, Hughes R. Pressurized calcination-atmospheric carbonation of limestone for cyclic CO2 capture from flue gases. Chem Eng Res Des. 2015;102:116–23.
  • [18] Shan L, Li H, Meng B, Meng J, Yu Y, Min Y. Improvement of CO2 capture performance of calcium-based adsorbent modified with palygorskite. Chinese J Chem Eng. 2016;24:1283–9.
  • [19] Baxter J, Bianz Z, Chen C, Danielson D, Dresselhaus MS, Fedorov AG. Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci. 2009;2:559–88.
  • [20] Liang G, Hout J, Schultz R. Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J Alloys Compd. 2011;320:133–9.
  • [21] Granados-Pichardo A, Granados-Correa F, Sánchez-Mendieta V, Hernández-Mendoza H. New CaO-based adsorbents prepared by solution combustion and high-energy ball-milling processes for CO2 adsorption: textural and structural influences. Arab J Chem. 2020;13:171–83.
  • [22] Pontiga F, Valverde JM, Moreno H, Duran-Olivencia FJ. Dry gas-solid carbonation in fluidized beds of Ca(OH)2 and nanosilica/Ca(OH)2 at ambient temperature and low CO2 pressure. Chem Eng J. 2013;222:546–52.
  • [23] Rashidi A, Yusupa S, Loong LH. Kinetic studies on carbon dioxide capture activity using activated carbon. Chem Eng Trans. 2013;35:361–6.
  • [24] Patil KS, Aruna ST, Mimami T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci. 2002;6:507–12.
  • [25] Granados-Correa F, Bulbulian S. Co(II) adsorption in aqueous media by a synthetic Fe-Mn binary oxide adsorbent. Water Air Soil Pollut. 2012;223:4089–100.
  • [26] Ho YS, McKay G. The kinetics of sorption of diva-lent metal ions onto sphagnum moss peat. Water Res. 2000;34:735–42.
  • [27] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:452–65.
  • [28] Liu Y, Liu YJ. Review-biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2008;61:229–42.
  • [29] Song G, Zhu X, Chen R, Liao Q, Ding Y, Chen L. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem Eng J. 2016;283:175–83.
  • [30] Foo KY, Hameed BH. Review-insights into the modelling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10.
  • [31] Kumar KV, Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes Pigm. 2007;74:595–7.
  • [32] Jeong-Hak C, Chang-Han L. Evaluation of Sr and Cs ions adsorption capacities with zeolitic materials synthesized from various mass ratios of NaOH to coal fly ash. Environ Eng Res. 2022;27:200662.
  • [33] Guyo U, Mhonyera J, Moyo M. Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover – A comparative study. Process Saf Environ Prot. 2015;93:192–200.
  • [34] Helfferich F. Ion exchange. New York: McGraw-Hill; 1964.
  • [35] Moroto-Valer MM, Tang Z, Zhang Y. CO2 capture by activated and impregnated anthracites. Fuel Process Technol. 2005;86:1487–502.
  • [36] Pighini C, Belin T, Mijoin J, Magnoux P, Costentin G, Lauron-Pernot H. Microcalorimetric and thermodynamic studies of CO2 and methanol adsorption on magnesium oxide. Appl Surf Sci. 2011;257:6952–62.
  • [37] Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem. 2002;38:89–99.
  • [38] Tran HN, You SJ, Chao HP. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J Environ Chem. 2016;4:2671–82.
  • [39] Seker A, Shahwan T, Eroglu AE, Yilmaz S, Demirel Z, Dalay C. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis. J Hazard Mater. 2008;154:973–80.
  • [40] Khoshandam B, Kumar RV, Allahgholi I. Mathematical modeling of CO2 removal using carbonation with CaO: the grain model. Korean J Chem Eng. 2010;27:766–76.
  • [41] Gutiérrez-Bonilla E, Granados-Correa F, Sánchez-Mendieta V, Morales-Luckie RA. MgO-based adsorbents for CO2 adsorption: influence of structural and textural properties on the CO2 adsorption performance. J Environ Sci. 2017;57:418–28.
  • [42] Valverde JM, Sanchez-Jimenez PE, Perez-Maqueda LA, Quintanilla MAS, Perez-Vaquero J. Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions. Appl Energy. 2014;125:264–75.
  • [43] Fennell PS, Pacciani R, Dennis JS, Davidson JF, Hayhurst AN. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand. Energy Fuels. 2007;21:2072–81.
  • [44] Lee SY, Park SJ. Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviours. J Solid State Chem. 2011;184:2655–60.
  • [45] Kaithwas A, Prasad M, Kulshreshtha A, Verna S. Industrial wastes derived solid adsorbents for CO2 capture: a mini review. Chem Eng Res Des. 2012;90:1632–41.
  • [46] Chen H, Zhao C. Development of a CaO based sorbent with improved cyclic stability for CO2 capture in pressurized carbonation. Chem Eng J. 2011;171:197–205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39b43918-8e71-4a83-a80c-aa5e7bbe9304
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.