Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The quality of the description of a chemical bond between the metal (acti ve site) and the ligand (substrate) critically depends on the electronic pro cesses accompanying the bond formation. However, as far as transition metal centers ( TM ) in enzymes are considered, most of the properties related to their electronic structure are extre mely challenging for quantum chemistry. Especially severe problems appear for the bonding of NO to fe rrous sites, e.g. in myoglobin or non-heme enzymes. Therefore, special care has to be shown in t he assessment of a quantum chemical method employed with respect to its power in des cribing the properties of interest. In this work we discuss spin-resolved Fe-NO charge transfe rs and their relation to the metal spin state, with special attention paid to the interpretation of t he bonding between NO and the transition metal center in terms of dative or covalent contributi ons; furthermore, the impact of spin and the electron transfer on the reactivity of the center is discussed. The stress is put on the role of the coordinating environment in controlling the re action mechanism via fine-tuning of the spin and the oxidation status of the metal core. This goe s in line with the high significance of spin in enzymatic reaction mechanisms ( cf. multi-state reactivity proposed for iron enzymes).
Wydawca
Rocznik
Tom
Strony
255--263
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Jerzy Haber Institute of Catalysis, Polish Academy of Sciences Krakow, Poland
autor
- Jerzy Haber Institute of Catalysis, Polish Academy of Sciences Krakow, Poland
autor
- Faculty of Chemistry, Jagiellonian University Krakow, Poland
Bibliografia
- [1] Radoń M, Broclawik E 2014 Comput. Methods to Study the Struct. & Dyn. of Biomolecules , Liwo A (ed.), Springer-Verlag 711
- [2] Borowski T, Broclawik E 2014 Comput. Methods to Study the Struct. & Dyn. of Biomolecules , Liwo A (ed.), Springer-Verlag 783
- [3] Mitoraj M P, Michalak A, Ziegler T 2009 J. Chem. Theory Comput. 5 962
- [4] Radoń M, Broclawik E, Pierloot K 2010 J. Phys. Chem. B 114 1518
- [5] Broclawik E, Stepniewski A, Radoń M 2014 J. Inorg. Biochem. 136 147
- [6] Shaik S, Chen H 2011 J. Biol. Inorg. Chem. 16 841
- [7] Escudero D, Thiel W 2014 J. Chem. Phys. 140 94105
- [8] Goerigk L, Grimme S 2011 Phys. Chem. Chem. Phys. 13 6670
- [9] Senn H, Thiel W 2007 Top. Curr. Chem. 268 173
- [10] Hausinger R P 2004 Crit. Rev. Biochem. Mol. Biol. 39 21
- [11] Miłaczewska A, Broclawik E, Borowski T 2013 Chem. Eur. J. 19 771
- [12] Ahlrichs R, Horn H, Schaefer A, Treutler O, Haeser M, Baer M, Boecker S, Deglmann P, Furche F 2006 Turbomole V 5.9, Quantum Chemistry Group, Universitaet Karlsruhe
- [13] Cheng H-Y, Chang S 2005 J. Mol. Struct.: THEOCHEM 724 209
- [14] Allouche A-R 2011 J. Comp. Chem. 32 174
- [15] Radoń M 2011 Natorbs (v. 0.3): universal utility for computing natural (spin) orbitals and natural orbitals for chemical valence , http://www.chemia.uj.edu.pl/∼mradon/natorbs (accessed July 2014)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39b23c25-99da-4dd9-bb52-896478b6928d