PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis and study of structural properties of Sn doped ZnO nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pure and Sn-doped ZnO nanostructures were synthesized by simple chemical solution method. In this method we used zinc nitrate and NaOH as precursors. Sn doping content in ZnO was taken with the ratio 0, 5, 10, 15 and 20 percent by weight. Physical properties of Sn-doped ZnO powder were studied by XRD analysis which revealed that Sn doping had a significant effect on crystalline quality, grain size, intensity, dislocation density and strain. The calculated average grain size of pure ZnO was 21 nm. The best crystalline structure was found for 0 wt.%, 5 wt.% and 10 wt.% Sn doping as observed by FESEM and XRD. However, higher Sn-doping (> 10 wt.%) degraded the crystallinity and the grain size of 27.67 nm to 17.76 nm. The structures observed in FESEM images of the samples surfaces were irregular and non-homogeneous. EDX depicted no extra peak of impurity and confirmed good quality of the samples.
Wydawca
Rocznik
Strony
741--746
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Department of Basic Sciences (Physics), University of Engineering & Technology, Taxila, Pakistan
autor
  • Department of Basic Sciences (Physics), University of Engineering & Technology, Taxila, Pakistan
autor
  • Government Municipal Postgraduate College, Toba Tek Singh, Pakistan
autor
  • Department of Physics, Bahudin Zikria University, Multan, Pakistan
autor
  • Department of Physics, Bahudin Zikria University, Multan, Pakistan
autor
  • Department of Mechanical Engineering, UET, Taxila, Pakistan
Bibliografia
  • [1] LI G., HU G.G., ZHOU H.D., FAN X.J., LI X.G., Mater. Chem. Phys., 75 (2002), 101.
  • [2] MIURA K., MASUDA M., ITOH M., HORIKAWA T., MACHIDA K.I., J. Alloy. Compd., 408 (2006), 1391.
  • [3] HUANG S., WANG L., LIU L., HOU Y., LI L., Agron. Sustain. Dev., 35 (2015), 369.
  • [4] GONCHAR A., GORELIK S., KATYNKINA S., LETYUK L., RYABOV I., J. Magn. Magn. Mater., 215 (2000), 221.
  • [5] HUANG J., ZHUANG H., LI, W., Mater. Res. Bull., 38 (2003), 149.
  • [6] PEREIRA F.M.M., SANTOS M.R.P., SOHN R.S., ALMEIDA J.S., MEDEIROS A.M.L., J. Mater. Sci.- Mater. El., 20 (2009), 408.
  • [7] CHO H.S., KIM S.S., IEEE T. Magn., 35 (1999), 3151.
  • [8] NEDKOV I., PETKOV A., KARPOV V., IEEE T. Magn., 26 (1990), 1483.
  • [9] SHEN G., XU M., XU Z., Mater. Chem. Phys., 105 (2007), 268.
  • [10] SUGIMOTO S., HAGA K., KAGOTANI T., INOMATA K., J. Magn. Magn. Mater., 290 (2005), 1188.
  • [11] ALI I., ISLAM M.U., AWAN M.S., AHMAD M., J. Alloy. Compd., 547 (2013), 118.
  • [12] BATOO K.M., KUMAR S., LEE C.G., Curr. Appl. Phys., 9 (2009), 826.
  • [13] PIRES G.F.M., RODRIGUES H.O., ALMEIDA J.S., SANCHO E.O., GOES J.C., COSTA M.M., DENARDIN J.C., SOMBRA, A.S.B., J. Alloy. Compd., 493 (2010), 326.
  • [14] FISTER M.J., DE GEUS A., RHINES W.C., HU J., CASSIDY R., IEEE T. Nucl. Sci., 43 (1996), 2874.
  • [15] KOOPS C.G., Phys. Rev., 83 (1951), 121.
  • [16] REDDY M.B., REDDY P.V., J. Appl. Phys., 75 (1994), 6125.
  • [17] WATAWE S.C., SARWADE B.D., BELLAD S.S., SUTAR B.D., CHOUGULE B.K., J. Magn. Magn. Mater., 214 (2000), 55.
  • [18] TSAKALOUDI V., KOGIAS G., ZASPALIS V.T., J. Alloy. Compd., 588 (2014), 222.
  • [19] REZLESCU N., REZLESCU E., Phys. Status Solidi A, 23 (1974), 575.
  • [20] PILLAI P.K.C., Polymeric Electrets, Plastics Engineering, New York, 1995.
  • [21] OUNNUNKAD S., WINOTAI P., J. Magn. Magn. Mater., 301 (2006), 292.
  • [22] BSOUL I., MAHMOOD S.H., J. Alloy. Compd., 489 (2010), 110.
  • [23] LECHEVALLIER L., LE J.M., BRETON J.F., HARRIS I.R., J. Magn. Magn. Mater., 269 (2004), 192.
  • [24] LEE S.W., AN S.Y., SHIM I.B., KIM C.S., J. Magn. Magn. Mater., 290 (2005), 231.
  • [25] IQBAL M.J., ASHIQ M.N., GUL I.H., J. Magn. Magn. Mater., 322 (2010), 1720.
  • [26] EL ATA A.A., REICHA F.M., ALI M.M., J. Magn. Magn. Mater., 292 (2005), 17.
  • [27] SAWADH P.S., KULKARNI D.K., B. Mater. Sci., 24 (2001), 47.
  • [28] JIA L., LUO J., ZHANG H., XUE G., JING Y., J. Alloy. Compd., 489 (2010), 162.
  • [29] KUMAR M.P, SHANKARAPPA T., KUMAR B.V., NAGARAJA N., Solid State Sci., 11 (2009), 214.
  • [30] IQBAL M.J., ASHIQ M.N., Chem. Eng. J., 136 (2008), 383.
  • [31] BAHSI Z.B., ORAL A.Y., Opt. Mater., 29 (2007), 672.
  • [32] MOTT N.F., DAVIS E.A., Electronic Processes in NonCrystalline Materials, Clarendon Press, London, 1979.
  • [33] PRAKASH T., JAYAPRAKASH R., ESPRO C., NERI G.,KUMAR E.R.,, J. Mater. Sci., 49 (2014), 1776.
  • [34] SIRDESHMUKH L., KUMAR K.K., LAXMAN S.B., KRISHNA A.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39b18750-dbdd-49b2-b9cf-eecf994b3a20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.