PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic modelling and analysis of IMU sensor errors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of a GPS/INS integration system is greatly determined by the ability of stand-alone INS system to determine position and attitude within GPS outage. The positional and attitude precision degrades rapidly during GPS outage due to INS sensor errors. With advantages of low price and volume, the Micro Electrical Mechanical Sensors (MEMS) have been wildly used in GPS/INS integration. Moreover, standalone MEMS can keep a reasonable positional precision only a few seconds due to systematic and random sensor errors. General stochastic error sources existing in inertial sensors can be modelled as (IEEE STD 647, 2006) Quantization Noise, Random Walk, Bias Instability, Rate Random Walk and Rate Ramp. Here we apply different methods to analyze the stochastic sensor errors, i.e. autoregressive modelling, Gauss-Markov process, Power Spectral Density and Allan Variance. Then the tests on a MEMS based inertial measurement unit were carried out with these methods. The results show that different methods give similar estimates of stochastic error model parameters. These values can be used further in the Kalman filter for better navigation accuracy and in the Doppler frequency estimate for faster acquisition after GPS signal outage.
Słowa kluczowe
Rocznik
Tom
Strony
437--449
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
autor
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
Bibliografia
  • Allan D. W., 1966. Statistics of atomic frequency standards, Proceedings of the IEEE, 54(2), pp. 221–230.
  • Barnes J. A. et al.,1971. Characterization of frequency stability. IEEE Trans. Instrum. Meas., vol. IM-20, no. 2, pp. 105–120.
  • Bos R., Waele S. D. & Broersen P. M. T., 2002. Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Trans. On Instrumentation and Measurement, 51(6), pp. 1289-1294.
  • Eshel G., 2010. The Yule Walker Equations for the AR Coefficients. University of South Carolina. http://www.stat.sc.edu/~vesselin/STAT520_YW.pdf.
  • Gelb A., 1974. Applied Optimal Estimation. MIT Press. Cambridge, Massachusetts.
  • Hou H., 2004. Modeling inertial sensors errors using AV, M.S. thesis, MMSS Res. Group, Dept. Geomatics Eng., Univ. Calgary. Canada. http://www.ucalgary.ca/engo_webdocs/ NES/04.20201. HaiyingHou.pdf
  • IEEE Std. 1293, 1998. IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Non-gyroscopic Accelerometers.
  • IEEE Std. 952, 1997. IEEE Standard Specification Format Guide and Test Procedure for Single–Axis Interferometric Fiber Optic Gyros.
  • IEEE Std. 647, 2006. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros.
  • Nassar, S., 2005. Accurate INS/DGPS positioning using INS data de-noising and autoregressive (AR) modeling of inertial sensor errors. Geomatica, 59(3), pp. 283-294.
  • Neumaier A., Schneider T., 2001. Estimation of Parameters and Eigenmodes of Multivariate Autoregressive Models. ACM Transactions on Mathematical Software, 27, pp.27- 57.
  • Savage P. G., 2002. Analytical Modeling of Sensor Quantiza-tion in Strapdown Inertial Navigation Error Equations, Journal of Guidance, Control, and Dynamics, 25(5). pp. 833-842.
  • Schneider T., Neumaier A., 2001. Algorithm 808: ARfit—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27(1), pp. 58-65.
  • Schwarz G., 1978. Estimating the dimension of a model. Ann. Statis, 6(2), pp. 461-464.
  • Zhang X., Mumford P., & Rizos C., 2008. Allan Variance Analysis on Error Characters of MEMS Inertial Sensors for an FPGA-based GPS/INS System. International Symposium on GPS/GNSS , November 2008.
  • Zhao Y., 2011. GPS/IMU integrated system for land vehicle navigation. Licentiate Thesis. Royal Institute of Technology (KTH). http://kth.diva-portal.org/smash/record.jsf?searchId=1& pid=diva2:446078
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39b05681-4b71-4167-ae2a-960917294b4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.