Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Heavy metals such as copper and chromium are toxic even trace levels in contaminated water can be harmful to humans. Heavy metals removal from wastewater using low cost technology, resulting in high efficiency and being environmentally friendly, is still a research concern. The purpose of this study is to investigate the possibility of using activated coffee pulp biosorbent to evacuate Cu(II) and Cr(III) heavy metal ions from an aqueous solution. Coffee pulp powder was activated with sodium hydroxide at different ratios of biosorbent to activator. The numerous framework, such as exposure time, initial concentrations of Cu(II) and Cr(III), isotherms as well as kinetic adsorption behaviors, were investigated through a batch adsorption technique. The results revealed the weight ratio of coffee pulp powder to NaOH for the favorable condition for Cu(II) and Cr(III) adsorption was 1:3.75, with their maximum adsorption capacities being 3.7319 ± 0.0058 and 3.3255 ±0.0129, respectively. The optimum operating conditions were obtained at 60 minutes of contact time, 70 mg/L, and 100 mg/L concentrations for Cu(II) and Cr(III) metal ions, with the adsorption capacity being 2.9155 mg/g and 4,1278 mg/g, respectively. The adsorption behavior of Cu(III) and Cr(III) onto the NaOH-activated coffee pulp biosorbent surface follows the Freundlich isotherm model and correspond to pseudo-second-order. This study proves that biosorbents derived from agricultural waste, such as activated coffee pulp, can be used as an alternative and effective adsorbent to remove Cu (II) and Cr (III) from aqueous solutions.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
190--199
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Chemistry Study Program of Mathematics and Natural Sciences Faculty, Udayana University Bukit Campus Jimbaran, Badung-Bali, Indonesia
autor
- Chemistry Study Program of Mathematics and Natural Sciences Faculty, Udayana University Bukit Campus Jimbaran, Badung-Bali, Indonesia
autor
- Chemistry Study Program of Mathematics and Natural Sciences Faculty, Udayana University Bukit Campus Jimbaran, Badung-Bali, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81117 Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81117 Bali, Indonesia
Bibliografia
- 1. Abdelwahab O., Thabet W.M. 2023. Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture Systems: A review. Egyptian Journal of Aquatic Research, 49(4), 431–443. https://doi.org/10.1016/j.ejar.2023.11.004
- 2. Ahmed H.M., Sobhy N.A., Hefny M.M., AbdelHaleem F.M., El-Khateeb M.A. 2023. Evaluation of agrowaste species for removal of heavy metals from synthetic wastewater. Journal of Environmental and Public Health, 23, 1–20. https://doi.org/10.1155/2023/7419015
- 3. Angon P.B., Islam M.S., Shreejana K.C., Das A., Anjum N., Poudel A., Suchi S.A. 2024. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10, e28357. https://doi.org/10.1016/j.heliyon.2024.e28357
- 4. Ayub S., Siddique A.A., Khursheed M.S., Zarei A., Alam I., Asgari E., Changani F. 2020. Removal of heavy metals (Cr, Cu, and Zn) from electroplating wastewater by electrocoagulation and adsorption processes. Desalination and Water Treatment, 179, 263–271. http://dx.doi.org/10.5004/dwt.2020.25010
- 5. Badran A.M., Utra U., Yussof N.S., Bashir M.J.K. 2023. Advancements in adsorption techniques for sustainable water purification: A focus on lead removal. Separations, 10(11), 565. https://doi.org/10.3390/separations10110565
- 6. Basem A., Jasim D.J., Majdi H.S., Mohammed R.M., Ahmed M., Al-Rubaye H.A., Kianfar E. 2024. Adsorption of heavy metals from wastewater by chitosan: A review. Results in Engineering, 23, 102404. https://doi.org/10.1016/j.rineng.2024.102404
- 7. Bhadoria P., Shrivastava M., Khandelwal A., Das R., Langyan S., Rohatgi B., Singh R. 2022. Preparation of modified rice straw-based bio-adsorbents for the improved removal of heavy metals from wastewater. Sustainable Chemistry and Pharmacy, 29, 100742. https://doi.org/10.1016/j.scp.2022.100742
- 8. Bost M., Houdart S., Oberli M., Kalonji E., Huneau J.F., Margaritis I. 2016. Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology. 35, 107–115. http://dx.doi.org/10.1016/j.jtemb.2016.02.006
- 9. Brazdis R.I., Fierascu I., Avramescu S.M., Fierascu R.C. 2021. Recent progress in the application of hydroxyapatite for the adsorption of heavy metals from water matrices. Materials, 14, 6898. https://doi.org/10.3390/ma14226898
- 10. Cusioli L.F., Mantovani D., Bergamasco R., Tusset A.M., Lenzi G.G. 2023. Preparation of a new adsorbent material from agro-industrial waste and comparison with commercial adsorbent for emerging contaminant removal. Processes, 11, 2478. https://doi.org/10.3390/pr11082478
- 11. Darweesh M.A., Elgendy M.Y., Ayad M.I., Ahmed A.M., Elsayed N.M.K., Hammad W.A. 2022. Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10– 20. https://doi.org/10.1016/j.sajce.2022.01.002
- 12. Dermentzis K., Christoforidis A., Valsamidou E. 2011. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. International Journal of Environmental Science,1(5), 697–710.
- 13. Felia S.N., Adityosulindro S., Zahrandika F.A., Hartono D. 2024. Removal of lead from aqueous solution using modified dewatered sewage sludge as adsorbent. E3S Web of Conferences, 485, 02005. https://doi.org/10.1051/e3sconf/202448502005
- 14. Fouda-Mbanga B.G., Velempini T., Villay K., Tywabi-Ngeva Z. 2024. Heavy metals removals from wastewater and reuse of the metal loaded adsorbents in various applications: A review. Hybrid Advances, 6, 100193. https://doi.org/10.1016/j.hybadv.2024.100193
- 15. Jadaa W., Mohammed H. 2023. Heavy metals – definition, natural and anthropogenic sources of releasing into ecosystems, toxicity, and removal methods – An overview study. Journal of Ecological Engineering, 24(6), 249–271. https://doi.org/10.12911/22998993/162955
- 16. Garza N.M., Swaminathan A.B., Maremand K.P., Zulkifli M., Gohil V.M. 2023. Mitochondrial copper in human genetic disorders. Trends in Endocrinology & Metabolism, 34(1), 21–33. https://doi.org/10.1016/j.tem.2022.11.001
- 17. Gupta A., Sharma V., Sharma K., Kumar V., Choudhary S., Mankotia P., Kumar B., Mishra H., Moulick A., Ekielski A., Mishra P.K. 2021. A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment. Materials, 14, 4702. https://doi.org/10.3390/ma14164702
- 18. Haghighizadeh A., Rajabi O., Nezarat A., Hajyani Z., Haghmohammadi M., Hedayatikhah S., Asl S.D., Beni A.A. 2024. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17, 105777. https://doi.org/10.1016/j.arabjc.2024.105777
- 19. Hafizuddin M.S., Lee C.L., Chin K.L., H’ng P.S., Khoo P.S., Rashid U. 2021. Fabrication of highly microporous structure activated carbon via surface modification with sodium hydroxide. Polymers, 13, 3954. https://doi.org/10.3390/polym13223954
- 20. Irshad M.A., Sattar S., Nawaz R., Al-Hussain S.A., Rizwan M., Bukhari A., Waseem M., Irfan A., Inam A., Zaki M.E.A. 2023. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotoxicology and Environmental Safety, 263, 115231. https://doi.org/10.1016/j.ecoenv.2023.115231
- 21. Karic N., Maia A.S., Teodorovic A., Atanasova N., Langergraber G., Crini G., Ribeiro A.R.L., Dolic M. 2022. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chemical Engineering Journal Advances, 9, 100239. https://doi.org/10.1016/j.ceja.2021.100239
- 22. Khedr A.A., Fawzy M.E., Ahmed H.M., Alshammari S.O., El-Khateeb M.A. 2024. Treatment of heavy metal ions from simulated water using adsorption process via modified iron magnetic nanocomposite. Desalination and Water Treatment, 317, 100071. https://doi.org/10.1016/j.dwt.2024.100071
- 23. Li, Y., Hu, J., Liu, H., Zhou, C., Tian, S., 2020. Electrochemically reversible foam enhanced flushing for PAHs-contaminated soil: stability of surfactant foam, effects of soil factors, and surfactant reversible recovery. Chemosphere, 260, 127645. https://doi.org/10.1016/j.chemosphere.2020.127645
- 24. Liu Y., Wang H., Cui Y., Chen N. 2023. Removal of copper ions from wastewater: A review. International Journal of Environmental Research and Public Health, 20, 3885. https://doi.org/10.3390/ijerph20053885
- 25. Maneerung T., Liew J., Dai Y., Kawi S., Chong C., Wang C.H. 2016. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 2000, 350–359. https://doi.org/10.1016/j.biortech.2015.10.047
- 26. Mayzarah E.M., Moersidik S.S., Saria L. 2018. Control of chromium hexavalent pollution on wastewater in nickel ore extraction industry with phytoremediation technology. E3S Web of Conferences, 68, 03011. https://doi.org/10.1051/e3sconf/20186803011
- 27. Mitra S., Chakraborty A.J., Tareq A.M., Emran T.B., Nainu F., Khusro A., Idris A.M., Khandaker M.U., Osman H., Alhumaydhi F.A. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34, 101865. https://doi.org/10.1016/j.jksus.2022.101865
- 28. Novia., Agustina T.E., Riduan S., Pangestu G. 2023. Testing of a laboratory wastewater treatment prototype using coagulation, adsorption, and photofenton processes. Ecological Engineering & Environmental Technology, 24(5), 202–209. https://doi.org/10.12912/27197050/165904
- 29. Okewale I.A., Grobler H. 2023. Assessment of heavy metals in tailings and their implications on human health. Geosystems and Geoenvironment, 2(4), 100203. https://doi.org/10.1016/j.geogeo.2023.100203
- 30. Ozcan S., Celebi H., Ozcan Z. 2018. Removal of heavy metals from simulated water by using eggshell powder. Desalination and Water Treatment, 127, 75–82. https://doi.org/10.5004/dwt.2018.22580
- 31. Rahman M. S., Saha N., Molla, A. H., Al-Reza S. M. 2014. Assessment of anthropogenic influence on heavy metals contamination in the aquatic ecosystem components: water, sediment, and fish. Soil and Sediment Contamination: An International Journal, 23(4), 353–373. https://doi.org/10.30574/wjbphs.2023.14.2.0162
- 32. Sahu D., Pervez S., Karbhal I., Tamrakar A., Mishra A., Verma S.R., Deb M.K., Ghosh K.K., Pervez Y.F., Shrivas K., Satnami M.L. 2024. Applications of different adsorbent materials for the removal of organic and inorganic contaminants from water and wastewater: A review. Desalination and Water Treatment, 317, 100253. https://doi.org/10.1016/j.dwt.2024.100253
- 33. Setyawan, F., Sawali F.D.I., Afandy M.A., Mustikaningrum M. 2024. Cr(VI) removal from aqueos solution by coagulation – adsorption integrated system. Indonesian Journal of Chemical Science, 13(1), 23–30.
- 34. Shokry H., Elkady M., Hamad H. 2019. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: operational parameters and mechanism study. Journal of Materials Research and Technology, 85(5), 4477–4488. https://doi.org/10.1016/j.jmrt.2019.07.061
- 35. Shrivastava R., Upreti R.K., Seth P.K., Chaturvedi U.C. 2022. Effects of chromium on the immune system. FEMS Immunology & Medical Microbiology, 34(1), 1–7. https://doi.org/10.1111/j.1574- 695X.2002.tb00596.x
- 36. Silas T.V., Osagie A.A. 2023. Biosorption isotherm and kinetic studies for the removal of Pb(II) and Fe(II) ions from synthetic waste water using unmodified Dennettia tripetala. GSC Biological and Pharmaceutical Sciences, 24(01), 319–328. https://doi.org/10.30574/gscbps.2023.24.1.0283
- 37. Smiri M., Elarbaoui S. 2023. Removal of cChromium (Cr) and formaldehyde [CH2O (H−CHO)] from leather tannery effluents using electrocoagulation treatment process. Polish Journal of Environmental Studies, 32(2), 1789–1797. https://doi.org/10.15244/pjoes/157494
- 38. Su, Q., Zhang J., Wang X., Li Y., Lin S., Han J. 2024. Adsorption removal of copper (II) and chromium (VI) from wastewater by Fe3 O4 -loaded granular activated carbon. Water Practice & Technology. 19(1), 99–112. https://doi.org/10.2166/wpt.2023.220
- 39. Sudiana I.K., Sastrawidana I.D.K., Sukarta I.N. 2022. Adsorption kinetic and isotherm studies of reactive red B textile dye removal using activated coconut leaf stalk. Ecological Engineering & Environmental Technology, 23(5), 61–71. https://doi.org/10.12912/27197050/151628
- 40. Sukarta I.N., Ayuni N.P.S., Sastrawidana I.D.K. 2021. Utilization of khamir (Saccharomyces cerevisiae) as adsorbent of remazol red RB textile dyes. Ecological Engineering & Environmental Technology, 22(1), 117–123. https://doi.org/10.12912/27197050/132087
- 41. Suyasa I.W.B., Sukarta I.N., Suprihatin I.E. 2024. Development of heavy metals bioaccumulation on anaerobic support system with sulfate reducing bacteria media. Journal of Ecological Engineering, 25(7), 295–304. https://doi.org/10.12911/22998993/188878
- 42. Taheri M., Khajenoori M., Yekta Z.S., Zahakifar F. 2023. Investigation of effective parameters in the removal of heavy metal from aqueous solution by biosorption method. Materials Chemistry and Mechanics, 1(2), 42–49. https://doi.org/10.22034/mcm.2023.2.5
- 43. Tangahu B.V., Berlianto M., Kartika A.A.G. 2020. Deconcentration of chromium contained in wastewater using a bacteria and microalgae consortia with a high rate algal reactor system. Journal of Ecological Engineering, 21(8), 272–284. https://doi.org/10.12911/22998993/126878
- 44. Tchounwou P., Newsome C., Williams J., Glass K. 2008. Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells. Metal Ions in Biology and Medicine, 10, 285–290.
- 45. Toth G., Hermann T., Da Silva M.R., L. Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309. https://doi.org/10.1016/j.envint.2015.12.017
- 46. Ullah R., Ullah T., Khan N. 2023. Removal of heavy metals from industrial effluents using burnt potato peels as adsorbent. Journal of Applied Organometallic Chemistry, 3(4), 284–293. https://doi.org/10.48309/jaoc.2023.416497.1118
- 47. Wang L., Liu S., Li J., Li S. 2022. Effects of several organic fertilizers on heavy metal passivation in Cd-contaminated gray-purple soil. Frontiers in Environmental Science, 10, 895646. https://doi.org/10.3389/fenvs.2022.895646
- 48. World Health Organization. 2020. Chromium in drinking-water. Background document for development of WHO Guidelines for drinking-water quality. Geneva.
- 49. Zhou G., Li S., Meng Q., Niu C., Zhang X., Wang Q. 2023. A new type of highly efficient fir sawdustbased super adsorbent: Remove cationic dyes from wastewater. Surfaces and Interfaces, 36:102637. https://doi.org/10.1016/j.surfin.2023.102637
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39adcb34-a2ef-4677-a98f-9d1d0c7f44f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.