PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bezpieczeństwo badań ultrasonograficznych : wskaźniki termiczny i mechaniczny

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Safety of Ultrasonic Examinations : Thermal and Mechanical Indices
Języki publikacji
PL
Abstrakty
PL
W ciągu ostatnich kilku dziesięcioleci ultradźwięki znalazły szerokie zastosowanie w diagnostyce obrazowej. Ten artykuł przeglądowy omawia potencjalne efekty biologiczne związane z propagacją ultradźwięków w tkankach i podaje fizyczne podstawy wprowadzonych indeksów mechanicznego MI i termicznego TI zgodnych z Output Display Standard (ODS). W praktyce klinicznej otrzymywane wyniki są kompromisem pomiędzy jakością obrazu a możliwością systemu uzyskiwania zadowalających obrazów głęboko leżących struktur tkankowych – wyboru dokonuje się, biorąc pod uwagę minimalizację bioefektów. Moce wyjściowe ultrasonografów są regulowane i ograniczane do określonych poziomów. Bezpieczne dawki ultradźwiękowe wyznacza się według określonych zasad, a na ekranie wyświetlane są związane z nimi wielkości. Wielkości te określają możliwości wystąpienia zmian mechanicznych i termicznych w tkankach i dlatego mają znaczenia kliniczne. Wprowadzone wskaźniki – mechaniczny MI i termiczny TI uwzględniają fizyczny mechanizm oddziaływania między ultradźwiękami i biologiczną tkanką, który zależy od czasowych i przestrzennych parametrów pola akustycznego generowanego przez głowice ultradźwiękowe. Przewidywany wzrost temperatury określa się, stosując trzy różne modele tkankowe: homogeniczny, warstwowy i układ kość/tkanka.
EN
Ultrasounds have found widespread use in imaging diagnostics over the past few decades. This review article combines the reports on the biophysical effects and provides the rationale behind the mechanical index (MI) and thermal index TI complying with Output Display Standard (ODS). In clinical practice, the obtained diagnostic results are a compromise between the quality of the image and the possibility of a system of obtaining satisfactory images of deep-lying tissue structures – the choice is made taking into account the minimization of bioeffects. The output powers of ultrasonographs are regulated and limited to specific levels. Safe ultrasonic doses are determined according to specific rules, and the screen displays the associated quantities. These quantities determine the possibility of mechanical and thermal changes in the tissues and therefore have clinical significance. The introduced indexes MI and TI take into account the physical mechanism of interaction between ultrasounds and biological tissue, which depends on the temporal and spatial parameters of the acoustic field generated by ultrasound transducers. The predicted temperature increase is determined using three different tissue models: homogeneous, layered and bone/tissue interface.
Rocznik
Strony
325--330
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, ul. Pawińskiego 5B, 02-106 Warszawa
Bibliografia
  • 1. 510 (k) Guide for measuring and reporting acoustic output of diagnostic ultrasound devices, Food and Drug Administration, Washington, DC., 1985 (revisions 1993-1996).
  • 2. National Electrical Manufacturers Association (NEMA): NEMA Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, UD-2-1992, NEMA (Washington, DC) and AIUM (American Institute of Ultrasound in Medicine) Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment, 1992.
  • 3. National Electrical Manufacturers Association (NEMA): NEMA Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, UD-3-1993, NEMA and AIUM (American Institute of Ultrasound in Medicine) Standard for Real Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment, 1993.
  • 4. IEC 62359: Ultrasonics – Field characterization – Test methods for the determination of thermal and mechanical indices related to medical diagnostic ultrasonic fields, International Standard International Electrotechnical Commission 62359 Ed.2.0, Geneva, Switzerland, 2010.
  • 5. American Institute of Ultrasound in Medicine Consensus Report on Potential Bioeffects of Diagnostic Ultrasound: Executive Summary, Fowlkes et al., J Journal of Diagnostic Medical Sonography, 27(1), 2011, 3-13.
  • 6. Medical ultrasound safety (Third Eddition), American Institute of Ultrasound in Medicine, 2014, 1-50.
  • 7. Biological effects of ultrasound: Mechanisms and clinical implications, NCRP Report No. 74, MD, National Council on Radiation Protection and Measurements, Bethesda, 1984.
  • 8. NCRP: Exposure criteria for medical diagnostic ultrasound: I. Criteria based on thermal mechanisms, NCRP Report No. 113, National Council on Radiation Protection and Measurements, Bethesda MD, 1992.
  • 9. W.L. Nyborg, M.C. Ziskin: Biological Effects of Ultrasound, New York, Churchill-Livingstone, 1985.
  • 10. M.E. Stratmeyer, H.F. Stewart: An overview of ultrasound: Theory measurements. Medical applications and biological effects, Washington, DC, US Department of Health and Human Services, Publication No. (FDA), 1982, 8290.
  • 11. R.E. Apfel, C.K. Holland: Gauging the likelihood of cavitation from short-pulse low-duty cycle diagnostic ultrasound, Ultrasound Med. Biol., 17, 1991, 179-185.
  • 12. K.E. Thomenius: Estimation of the potential for bioeffects, [in:] M.C. Ziskin, P.A. Lewin (eds.): Ultrasonic Exposimetry, CRC Press, Boca Raton, FL, 1993, 371-407.
  • 13. C. Kollmann, G. ter Haar, L. Dolezal, M. Hennerici, K.A. Salvesen, L. Valentin: Ultrasound Output: Thermal (TI) and Mechanical (MI) Indices, Ultraschall in der Medizin, 34(5), 2013, 422-434.
  • 14. D.L. Miller: A review of the ultrasonic bioeffects of microsonation: Gas-body activation and related cavitation-like phenomena, Ultrasound Med. Biol., 13, 1987, 443.
  • 15. W.L. Nyborg: Physical mechanisms for biological effects of ultrasound, US Department of Health, Education, and Welfare, Publication No. 78-8062. Washington, DC, Government Printing Office, 1977.
  • 16. P.A. Lewin, B.B. Goldberg: Ultrasound bioeffects for the perinatologist, [in:] J.J. Sciarra ed.: Gynecology and Obstetrics, Lippincott-Raven, Philadelphia, 1997, 1-19.
  • 17. D.O. Draper, S. Sunderland, D.T. Kirkendall, et al.: A comparison of temperature rise in human calf muscle following applications of underwater and topical gel ultrasound, J Orthop Sports Phys Ther., 17, 1993, 53, 247-251.
  • 18. G. ter Haar, J.W. Hopewell: Ultrasonic heating of mammalian tissues in vivo, Br. J. Cancer, 55(45), 1985, 65-67.
  • 19. K.M. Seekins, A.F. Emery: Thermal science for physical medicine, [in:] J.F. Lehmann (Ed.): Therapeutic Heat and Cold, Williams & Wilkins, Baltimore, 1982, 70-132.
  • 20. G. ter Haar: Biological effects of ultrasound in clinical applications, [in:] K.S. Suslick (ed.): Ultrasound: Its Chemical, Physical, and Biological Effects, New York, NY, VCH Publishers Inc; 12, 1998, 305-320.
  • 21. L.A. Crum, G.M. Hansen: Growth of air bubbles in tissue by rectified diffusion, Phys. Med. Biol., 27, 1982, 412.
  • 22. P.A. Lewin, L. Bjorno: Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue, J. Acoust. Soc. Am., 69, 1981, 846.
  • 23. C.C. Church, H.G. Flynn: A mechanism for generation of cavitation maxima by pulsed ultrasound, J. Acoust. Soc. Am., 76, 1984, 505.
  • 24. S.B. Barnett, H.D. Rott, G. ter Haar, et al.: The sensitivity of biological tissue to ultrasound, Ultrasound Med. Biol., 23, 1997, 805-812,
  • 25. C. Sehgal, R.G. Sutherland, R.E. Verral: Sonoluminescence of NO- and NO2- saturated water as a probe of acoustic cavitation, J. Phys. Chem., 84, 1980, 396.
  • 26. S.E. Barnett, G.R. Haar, M.C. Ziskin, K. Moeda: Current status of research on biophysical effects of ultrasound, Ultrasound Med. Biol., 20(3), 1994, 205.
  • 27. A.J. Coleman, M.J. Choi, J.E. Saunders: Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy, Ultrasound Med. Biol., 22, 1996, 1079-1087.
  • 28. N. Vakil, E.C. Everbach: Transient acoustic cavitation in gallstone fragmentation: a study of gallstones fragmented in vivo, Ultrasound Med. Biol., 19, 1993, 331-342.
  • 29. K. Martin: The acoustic safety of new ultrasound technologies, Ultrasound, 18, 2010, 110-118.
  • 30. P. Lewin, A. Nowicki: Acoustic output levels and ultrasound output display standards, Archives of Acoustics, 23(2), 1998, 267-280.
  • 31. J.G. Abbott: Rationale and derivation of MI and TI: A review, Ultrasound in Med. & Biol., 25, 1999, 431-441.
  • 32. M.W. Miller, M.C. Ziskin: Biological consequences of hyperthermia, Ultrasound in Med. & Biol. 15, 1989, 707.
  • 33. G. ter Haar: Results of a Survey of Exposure Conditions used in Ultrasound Scans in the UK, February 2007, Ultrasound, 16(2), 2008, 110-113.
  • 34. E.L. Carstensen, S.Z. Child, C. Crane, K.J. Parker: Lysis of cells in Elodea leaves by pulsed and continuous wave ultrasound, Ultrasound Med. Biol., 16, 1990, 167-173.
  • 35. C.K. Holland, R.E. Apfel: Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment, J. Acoust. Soc. Am., 88, 1989, 2059-2069.
  • 36. BMUS: Guidelines for the safe use of diagnostic ultrasound equipment Safety Group of the British Medical Ultrasound Society 2009, www.bmus.org.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39ac2363-102b-4ab3-b5ab-8d22d37ce8c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.