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Abstract 

In the paper the transversal vibration of a representative annular plate with complex geometry is studied on 
the basis of the numerical method and simulation. The research is focused on preparing the numerical model 
by using the cyclic symmetry modeling approach. The obtained results are discussed and compared with 
the experimental data. FE models are formulated by using ANSYS code. 
 
Keywords: transversal vibration, cyclic model, annular plate 

1. Introduction 

Problems of transverse vibration of annular plates have been the subject of many recent 
investigations [1, 4]. This is due to the fact that some rotating systems can be treated as 
annular plates, where both their shape and dimensions are affected by the design of these 
systems. In papers [1, 4] the authors analyse free transverse vibration of toothed gears by 
using the finite element (FE) technique. In papers [3, 4] the cyclic symmetry modeling is 
included in the solving process of the vibration problems of compound systems. In 
the above presented article free transverse vibration of a compound annular plate is ana-
lysed by using the FE technique and experimental investigation. 

2. Formulation of the problem 

The objective of this paper is to present the methods of FE modeling of the compound 
annular plates transverse vibration and analyse their usefulness in the representation of 
the vibration process. For that purpose, a set of two compound circular plates has been 
analysed. The analysed systems have the geometry as it is displayed in Figure 1. Primary 
geometrical dimensions of the systems (diameters: dz, dw, d1; thickness: lr, lw) are shown 
in Table 1. 

Table 1. Parameters characterizing the analysed plates 

No of 
models 

dz 
[m] 

dw 
[m] 

d1 
[m] 

lr 
[m] 

lw 
[m] 

E 
[Pa] 

ρ  
[kg/m3] 

ν 

1 0.191 0.159 
0.02 0.008 0.002 2.1⋅1011 7.85⋅103 0.28 

2 0.203 0.147 
 

In these Table, E is Young’s modulus of elasticity, ρ is the mass density and ν is 
the Poisson ratio, respectively. 
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Figure 1. Geometrical models of the systems 

For each case the problem of free vibration is solved by the finite element method. After 
elaboration of discrete models of the structures to be analysed, the differential equations 
of motion of the each analysed system can be written in the form [2] 

 0=+ KuuM &&  (1) 

where M is the global mass matrix, K is the global stiffness matrix, and u is the nodal 
displacement vector. Both global mass and stiffness matrices are obtained from the ele-
ment matrices that are given by [2] 
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where ρ (e) is density of the element, N is the matrix of the element shape functions, B is 
the element shape function derivatives matrix, E is the material stiffness matrix, and V (e) 
is volume of the element. The natural frequencies of the system are obtained by solving 
the eigenvalue problem 

 ( ) 02 =− uMK ω  (3) 

where ω  is natural frequency and u  is corresponding mode shape vector, which is 
determined by the relation (3). The number of eigenpairs ( ii u,ω ) corresponds to 

the number of degrees of freedom of the system. The block Lanczos method is applied to 
solve the eigenvalue problem (3). Because of the discretization process, the FE models 
of the considered systems are treated as approximations of the exact systems. The error 
between the objects and the FE models is defined by 

 ( ) [ ]%100×−= eef ωωωε  (4) 

where fω  is the natural frequency from the FE solution, while eω  is the natural fre-
quency of the exact system. Equation (4) is the so–called frequency error [2]. For 
the investigation presented in this paper the needed accurate values of the natural fre-
quencies are achieved by the realization of experimental investigation. 
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3. Numerical analysis 

In this section, the FE models of the systems under consideration are prepared and natu-
ral frequencies of the transverse vibration are determined. In accordance with the circu-
lar and annular plate vibration theory [2] the particular natural frequencies of vibration 
are denoted as ωmn where m refers to the number of nodal circles and n is the number of 
nodal diameters. For each system, three FE models are realized. The first FE model is 
prepared as follows. Each geometrical model of these systems is meshed by using stand-
ard procedures of the ANSYS software. The 3–D solid mesh is prepared and the ten 
node tetrahedral element (solid187) with three degrees of freedom in each node is em-
ployed to realize each model. During the mesh generation process, it is assumed that 
the maximum length of each element’s side needs to be no more than 2 [mm]. The big-
ger FE model refers to the second object and includes 143760 solid elements. The small-
er FE model includes 97404 solid elements. For all models discussed here, calculations 
were continued until the natural frequency ω16 was determined. Tables 2 and 5 display 
the natural frequencies obtained by using the discussed FE models. 

Table 2. Natural frequencies of the first FE model related to the object no 1 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 236.5 149.4 643.6 1770 3340 5292 7523 
2 1932 2240 2899 3931 5327 7009  
3 4531 5167 6580     

 

The second FE model of each system is prepared by using cyclic symmetry feature of 
the analysed systems. Geometrical model of each system consists of six sectors 
(see Fig. 1b) which have the cyclic symmetry feature. One of these segments is meshed 
by using standard procedures of the ANSYS software and the cyclic symmetry boundary 
conditions are included. The mesh generation and the computation process are conducted 
under the same conditions as for the previously discussed FE model cases (the full model 
cases). The bigger cyclic FE model refers to the second object and includes 23960 solid 
elements. The smaller cyclic FE model includes 16234 solid elements. Thus, the solution 
of free vibration is obtained on the basis of these single symmetric sectors. Tables 3 and 
6 display the natural frequencies obtained by using the discussed cyclic symmetry FE 
models (the first cyclic model cases). 

Table 3. Natural frequencies of the second FE model related to the object no 1 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 236.4 149.4 643.6 1770 3340 5292 7523 
2 1935 2240 2898 3930 5327 7009  
3 4530 5166 6579     

 

The third FE model of each system is prepared in the same manner as the second FE 
model cases, but the maximum length of each element’s side is different. For these cases 
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the maximum length of each element’s side is no more than 1.5 [mm]. So, the bigger 
cyclic FE model, which refers to the second object, includes 57834 solid elements and 
the smaller cyclic FE model includes 38131 solid elements, respectively. Tables 4 and 7 
show the natural frequencies obtained by using the above cyclic symmetry FE models 
(the second cyclic model cases). 

Table 4. Natural frequencies of the third FE model related to the object no 1 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 235.8 148.9 643.4 1770 3340 5291 7519 
2 1928 2233 2890 3922 5317 6997  
3 4520 5157 6566     

 

Table 5. Natural frequencies of the first FE model related to the object no 2 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 213.5 123.4 658.9 1804 3398 5403 7781 
2 1916 2458 3337 4507 6059   
3 4109 4680 6321     

 

Table 6. Natural frequencies of the second FE model related to the object no 2 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 213.5 123.3 658.9 1804 3398 5403 7781 
2 1916 2457 3336 4507 6059   
3 4108 4679 6321     

 

Table 7. Natural frequencies of the third FE model related to the object no 2 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 212.8 122.9 658.8 1804 3398 5403 7781 
2 1913 2452 3326 4496 6046   
3 4092 4666 6312     

4. Experimental studies 

In this section the results related to the experimental verification of the considered nu-
merical models are discussed. LMS measurement environment is used in the experi-
mental study. The measuring set contained the PCB model 086C03 type modal hammer, 
accelerometer PCB model 353B18, LMS SCADA data acquisition system, and SCM-
V4E type measuring module supported by LMS Test.Lab software. The experimental 
study is conducted to identify natural frequencies and corresponding mode shapes relat-
ed to the transverse vibration of the considered objects. The values of the excited natural 
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frequencies are shown in Table 8 (for the first object) and in Table 12 (for the second 
object), respectively. 

Table 8. Natural frequencies of the first object ωmn [Hz] (experimental investigation) 

 
n 

 0 1 2 3 4 5 6 

m 
1 263.8 141.9 575.6 1697 3272 5233 7463 
2 1847 2247 2948 3976 5318 6941  
3 4397 5001 6453     

 

In Tables 9–11 the values of the frequency error related to the FE models of the first 
object are displayed. In each FE model case, only for two natural frequencies (ω10 and 
ω12) the frequency error is above 10 [%]. In Tables 13–15 the values of the frequency 
error related to the FE models of the second object are displayed. In this object, only 
nine natural frequencies were excited. In each FE model case, for two natural frequen-
cies the frequency error is above 10 [%]. 

Table 9. Frequency error related to the first FE model of the first object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -10.35 5.29 11.81 4.3 2.08 1.13 0.8 
2 4.6 -0.31 -1.66 -1.13 0.17 0.98  
3 3.05 3.32 1.97     

 

Table 10. Frequency error related to the second FE model of the first object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -10.39 5.29 11.81 4.3 2.08 1.13 0.8 
2 4.76 -0.31 -1.7 -1.16 0.17 0.98  
3 3.02 3.3 1.95     

 

Table 11. Frequency error related to the third FE model of the first object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -10.61 4.93 11.78 4.3 2.08 1.11 0.75 
2 4.39 -0.62 -1.97 -1.36 -0.02 0.81  
3 2.8 3.12 1.75     

 

Table 12. Natural frequencies of the object no 2 ωmn [Hz] (experimental investigation) 

 
n 

 0 1 2 3 4 5 6 

m 
1 221.3 106.3 596.3 1740  5330 7709 
2  2444 3254 4389    
3        
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Table 13. Frequency error related to the first FE model of the second object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -3.53 16.09 10.5 3.68  1.37 0.93 
2  0.57 2.55 2.69    
3        

 

Table 14. Frequency error related to the second FE model of the second object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -3.53 16 10.5 3.68  1.37 0.93 
2  0.53 2.52 2.69    
3        

 

Table 15. Frequency error related to the third FE model of the second object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -3.84 15.62 10.48 3.68  1.37 0.93 
2  0.33 2.21 2.44    
3        

5. Conclusions 

The present paper deals with free transverse vibration of a compound annular plate. 
Three FE models are proposed. For all the FE model cases discussed, comparable results 
have been obtained. The most attractive is the second FE model case, which includes 
cyclic symmetry features. Moreover, this model includes a substantially lower number of 
finite elements compared to the remainder of models. It is worth pointing out that in 
the preferred FE model case the maximum length of each element’s side equal to the 
lesser plate thickness was assumed. At this stage of the research, it seems that further 
investigation needs to be continued. 
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