PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ obróbki termoplastycznej tytanu Grade 2 na właściwości nanoindentacyjne

Identyfikatory
Warianty tytułu
EN
The influence thermoplastic processing of the titanium Grade 2 on the nanoindenation properties
Języki publikacji
PL
Abstrakty
PL
Czysty tytan jest materiałem pożądanym w biotechnologii ze względu na doskonalą biozgodność oraz brak toksycznych pierwiastków, takich jak wanad czy aluminium. Niestety w stosunku do powszechnie używanego stopu na protezy Ti6Al4V jest on materiałem o niskich właściwościach mechanicznych. Obróbka termoplastyczna tytanu miała na celu poprawę jego właściwości mechanicznych poprzez zredukowanie wielkości ziarna. Wykonano eksperyment polegający na ściskaniu próbek tytanu w podwyższonej temperaturze i przy różnych prędkościach odkształceń. Uzyskano krzywą naprężenie-odkształcenie oraz obrazy mikrostruktury tytanu, które wskazywały na redukcję ziarna. Następnie wykonano pomiary nanoindentacyjne twardości oraz modułu Younga. Wyniki wskazują na nieznaczny wzrost twardości i sztywności w większości przypadków. Dla wysokich prędkości odkształcenia zaobserwowano spadek tych wartości.
EN
Pure titanium is a desired material in biotechnology due to its excellent biocompatibility and the absence of toxic elements like vandium or aluminium. Unfortunately, in comparison to widely used Ti6Al4V alloy it has low strenght properties. Therefore, thermoplastic processing was used as means to improve its mechanical properties by the grain size reduction. An experiment of samples compression in raised temperature and various strain rates was conducted. The stress-strain curves and microstructure observations were made. Both indicated grain reduction. In the next step nanoindentation hardness and Young modulus measurements were made. The results indicate slight increase in hardness and stiffness in most cases. For the high strain rates a decrease in those values was observed.
Rocznik
Tom
Strony
17--21
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Politechnika Warszawska, Wydział Mechaniczny Technologiczny, Instytut Mechaniki i Poligrafii, Warszawa
Bibliografia
  • 1. Shima Ehtemam-Haghighi, Guanghui Cao, Lai-Chang Zhang: Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. "Journal of Alloys and Compounds" 2017, vol. 692, pp. 892-897.
  • 2. Ansarian I. et al.: Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. "Journal of Alloys and Compounds" 2019, vol. 776, pp. 83-95.
  • 3. Hall E.O.: The Deformation and Ageing of Mild Steel: III Discussion of Results. " Proceedings of the Physical Society. Section B" 1951 , vol. 64, No. 9, pp. 747-753.
  • 4. Petch N.J.: The Cleavage Strength of Polycrystals. "Journal of the Iron and Steel Institute" 1953, vol. 174, pp. 25-28.
  • 5. Bagherpour E., Pardis N., Reihanian M., Ebrahimi R.: An overview on severe plastic deformation: research status, techniques classification, microstructure evolution and applications. "The International Journal of Advenced Manufacturing Technology" 2019, vol. 100, issue 5-8, pp. 1647-1694.
  • 6. Simón Roa Diaz: On the propagation of methodological uncertainties in Depth Sensing Indentation data analysis: A brief and critical review. "Mechanics Research Communications" 2020, vol. 105, 103516.
  • 7. Han Li, Vlassak Joost: Determining the Elastic ModuIus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation. "Journal of Materials Research" 2009, 24(3), pp. 1114-1126.
  • 8. Makuch A., Grygiel D.: Analiza możliwości oceny zdolności do umocnienia wybranych materiałów w badaniu indentacji. ,,Inżynieria Powierzchni" 2016, vol. 21, nr 3, s. 39-44.
  • 9. Tuck J.R., Korsunsky A.M., Bull S.J. et al.: On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. "Surface and Coatings Technology" 2001, vol. 137, issues 2-3, pp. 217-224.
  • 10. Pohl F., Huth S., Theisen W.: Indentation of self-similar indenters: An FEM-assisted energy-based analysis. "Journal of the Mechanics and Physics of Solids" 2014, vol. 66, pp. 32-41.
  • 11. Iracheta O., Bennett C.J., Sun W.: A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test. "Journal of the Mechanics and Physics of Solids" 2019, vol. 128, pp. 1-20.
  • 12. Muhammad M., Masoomib M., Torries B. et al.: Depth-sensing time-dependent response of additively manufactured Ti-6Al-4V alloy. "Additive Manufacturing" 2018, vol. 24, pp. 37-46.
  • 13. Recco A.A.C., Viafara C.C., Sinatora A., Tschiptschina A.P. : Energy dissipation in depth-sensing indentation as a characteristic of the nanoscratch behavior of coatings. "Wear" 2009, vol. 267, issue 5-8, pp. 1146-1152.
  • 14. Bańczerowski J., Jeleńkowski J., Skalski K., Sawicki S., Wachowski M.: Structure and mechanism of the deformation of Grade 2 titanium in plastometric studies. "Materials Science and Technology" 2018, vol. 35, issue 3, pp. 253-259.
  • 15. Bańczerowski J., Jeleńkowski J., Płociński T., Skalski K.: The titanium structure after a thermoplastic compression at elevated temperatures. "Materials Science and Technology" 2019, vol. 35, issue 16, pp. 1997-2003.
  • 16. Fitzner A., Palmer J., Gardner B. et al.: On the work hardening of titanium: new insights from nanoindentation. "Journal of Materials Science" 2019, vol. 54, pp. 7961-7974.
  • 17. Salem A.A., Kalidindi S.R. , Doherty R.D., Semiatin S.L.: Strain hardening due to deformation twinning in α-titanium: Mechanisms. "Metallurgical and Materials Transactions A" 2006, vol. 37, pp. 259- 268.
  • 18. Zambaldi C., Yang Y., Bieler T.R., Raabe D.: Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip. "Journal ofMaterials Research" 2012, vol. 27, No. 1, pp. 356-367.
  • 19. Viswanathan G.B., Lee E., Maher D.M. et al.: Direct observations and analyses of dislocation substructures in the a phase of an α/β Ti-alloy formed by nanoindentation. "Acta Materialia", vol. 53, issue 19, pp. 5101-5115.
  • 20. Kwon J., Brandes M.C., Phani P.S. et al.: Characterization of deformation anisotropies in an α-Ti alloy by nanoindentation and electron microscopy. "Acta Materialia" 2013, vol. 61 , issue 13, pp. 4743-4756.
  • 21 . Fizanne-Michel C., Cornen M., Castany P. et al.: Determination of hardness and elastic modulus inverse pole figures of a polycrystalline commercially pure titanium by coupling nanoindentation and EBSD techniques. "Materials Science and Engineering: A" 2014, vol. 613, pp. 159-162.
  • 22. Kao Y.L., Tu G.C., Huang C.A., Liu T.T.: A study on the hardness variation of α- and β-pure titanium with different grain sizes. "Materials Science and Engineering: A" 2005, vol. 398, issues 1- 2, pp. 93-98.
  • 23. Contieri R.J. , Zanotello M. ,..Caram R.: Recrystallization and grain growth in highly cold worked CP-Titanium. "Materials Science and Engineering: A" 2010, vol. 527, issues 16-17, pp. 3994-4000.
  • 24. Sajadifar S.V., Yapici G.G.: Workability characteristics and mechanical behavior modeling of severely deformed pure titanium at high temperatures. "Materials & Design" 2014, vol. 53, pp.749-757.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39a867f4-78b9-458e-95a6-bd6d765af657
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.