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Abstract. We show that, under some additional assumptions, all projection operators onto
latticially closed subsets of the Orlicz-Musielak space generated by ® are isotonic if and only
if ® is convex with respect to its second variable. A dual result of this type is also proven
for antiprojections. This gives the positive answer to the problem presented in Opuscula
Mathematica in 2012.
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1. INTRODUCTION

The isotonicity of projection operators onto closed (or latticially closed) subsets of
ordered metric spaces has been investigated since 1986, mainly in Hilbert spaces and
Banach spaces (for details and possible applications see [1,3-5] and the references
given there), and in modular spaces [2,9]. Moreover, antiprojection operators have
also been examined from this point of view in [6,7,9].

It turns out that the monotonic properties of projections and antiprojections in
various function spaces can be determined by two special functional inequalities,
named “the properties of four elements”, which were defined in [1, 6], and further
investigated in [2,5,7,9]. In particular, it has been shown that, under some additional
assumption denoted in [9] as (*), both these inequalities are valid in an Orlicz-Musielak
space if and only if this space is generated by a convex ¢-function [9, Theorem 3.5].

In this note we prove a new, even stronger theorem stating that, under some
new assumption on the p-function ®, all projections onto latticially closed subsets of
the Orlicz-Musielak space L® are isotonic (and all antiprojections onto such sets are
antiisotonic) if and only if ® is convex with respect to its second variable (Theorem 3.4,
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see also Remark 3.5 and Theorem 3.6). This strengthens the results published in [2,7],
and gives the affirmative answer to the question presented as Problem 3.8 in [9)].

2. PRELIMINARIES

In this section we review some of the standard facts on Orlicz-Musielak spaces. In
particular, we set up notation and terminology used in the following part of the text.
For a more detailed summary of the modular spaces theory we refer the reader to
[10,11].

Let us first recall the notion of an Orlicz-Musielak space.
Definition 2.1. Let (Q,X,u) be a space with nonzero measure. Then

®: QO xRy — Ry is a p-function with a parameter if it satisfies the following
properties:

1. for every t € Q, v:(-) = @(¢,-) : R4 — R, is a nondecreasing, continuous function
such that ¢;(0) = 0 and ¢;(x) > 0 for z > 0,
2. for every x € Ry, (-, z) : Q — R, is a Y-measurable function.

Definition 2.2. Let ® be a ¢-function with a parameter and denote by M (€2;R) the
set of all real ¥X-measurable functions defined on €2, with equality p-almost everywhere.
For f € M(£2;R) define
palf) = [ Ble. 1)) du).
Q

Then pg is the Orlicz-Musielak modular generated by ®. The corresponding modular
space

L* = {f € M(Q:R): lim pa(af) =0}

is the Orlicz-Musielak space. If the function ® is independent of ¢, the modular pg
is said to be the Orlicz modular. Every Orlicz-Musielak space can be ordered in the
natural way by the cone of nonnegative functions (f > ¢ if and only if f — g > 0).

Remark 2.3. By the Lebesgue dominant convergence theorem, it is easy to show
that
L* = {f € M(;R): pg(af) < oo for some a > 0} .

The following definition of the projection and the antiprojection onto a subset of
an Orlicz-Musielak space agrees with the one widely used in metric space theory.

Definition 2.4. Let D be any subset of L® and choose f € L®. Then

Po(f) ={w € D: polf =9) = Jnf pots -}

and

PHO = {2 € D: pols =2 = sup pulf ) |
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The sets Pp(f) and PA(f) (both of which can be empty) are called the projection of
f onto D and the antiprojection of f onto D, respectively.

Definition 2.5. We say that the projection operator Pp is isotonic if, for any
z,y € L* such that z < y and both Pp(z), Pp(y) are non-empty, there exist
w € Pp(xz) and v € Pp(y) satisfying w < v. In particular, if z < y and Pp(z),
Pp(y) are both singletons, then Pp(x) < Pp(y). The antiprojection operator Pg
is antiisotonic if, for any x,y € L?® such that 2 < y and both P&(z), P3(y) are
non-empty, there exist w € Pf(x) and v € PE(y) with w > v. In the case when z <y
and P§(z), PA(y) are both singletons, we get Pf(x) > P3(y).

Definition 2.6. A set D C L% is called latticially closed if min(z,y) € D and
max(z,y) € D for all z,y € D.

Various examples of such sets are given in [7, Ex. 2.4] and [8, Ex. 1.4].

3. MAIN RESULTS

From the results proved in [2,7], the following theorem can been derived.
Theorem 3.1. If ® is convex with respect to its second variable, then:

(1) for each latticially closed set D C L%, the projection operator Pp is isotonic,
(2) for each latticially closed set D C L®, the antiprojection operator Pj is antiiso-
tonic.

Moreover, it is known that the analogue of the above theorem does not have to be
true if @ is not a convex function of z, see [9, Ex. 3.7] for the counterexample.

Now we are going to show that the assumption of convexity in Theorem 3.1 is, in
fact, the essential one. We will need the following additional (but not too restrictive)
assumption.

Assumption (xx). For any y1,y2,y3,y4 > 0,t € Q and € > 0, there exist two disjoint
sets 1, Qs € ¥ such that:

(a) (1) = p(€) € (0,00),
(b) |®(w,y;) — P(t,y;)] <eforwe QUQyand 1 <i<A4.

Remark 3.2. The condition (*x) is satisfied in various important cases, the examples
of which are listed below.

1. (the Orlicz case) If ®(t,z) = ®(x), then for all y1,y2, ys, ya, t and €, we can choose
the same pair of disjoint sets 1, € ¥ with equal, positive and finite measure.

2. (the sequence case with some additional assumptions) Let 2 = N with the counting
measure and assume that, given t € N and M > 0, we may find ¢; # ¢ such that

|®(t1,y) — O(t,y)| < e for all y € [0, M].

Then we put Qy = {t}, Qs = {1}, where t; is chosen for M = maxy;.
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3. (the continuous atomless case) Suppose that  C R™ is an open set with positive
Lebesgue measure and that, for each = € R, the function ®(-,z) is continuous.
Then there exist positive numbers €; with

|®(w,y;) — D(t,y;)| < e for w e B(t,e;) and 1 <14 <4,

where B denotes the closed ball in R™. In this case, we choose any disjoint sets
Q1,9 C B(t,mine;) which satisfy (a).
1

Moreover, without loss of generality we can assume that (1) = pu(2) = 1 (replacing
the measure p with 1/u(€Q4), if necessary).

Remark 3.3. It is also worth mentioning that our new assumption (*x) implies prop-
erties (1) and (3) required in (*) (see [9, p. 172]), with A} = Q; (or Q). Additionally,
in all of the cases presented in the previous remark the remaining condition (2) is also
satisfied.

Our new result, which improves Theorem 3.1, reads as follows.

Theorem 3.4. Let &: QxR — Ry be a p-function with a parameter such that (xx)
is satisfied. Then the following conditions are equivalent:

i) for each t € Q, @ is a convex function,
P
(ii) for each t € Q, @y satisfies the Lim inequality: if a,b > 0 and ¢ > a, then

pi(a) + @b+ c) > pi(a+b) + @i(c),

(iii) for any latticially closed set D C L®, the projection operator Pp is isotonic,
(iv) for any latticially closed set D C L®, the antiprojection operator P8 is antiiso-
tonic.

Proof. Let us first point out that the equivalence (i)<(ii) has already been observed
and used in [9, Theorem 3.5], while (i)=-(iii) and (i)=-(iv) hold by Theorem 3.1.
Consequently, we only need to prove that both (iii) and (iv) imply (ii).
Suppose, on the contrary, that ¢; does not satisfy the Lim inequality for some
t € Q. This gives
pi(a) + @i(b+c) < pr(a+b) +pi(c) —4e (3.1)
with appropriately chosen a,b,e > 0 and ¢ > a. By (xx) and the following remark, for
such t,e and y; = a, y2 =b+c¢, y3 = a+ b, y4 = ¢ we can find the corresponding sets

Q4, Qs of measure 1.
Set A =01 UQs, d=c/a> 1 and define four simple functions on :

c(d—1)

d
z=c-Ia, w=(b+c)- 14,

v=(a+b+c) Io,, y= g, + (b+2c) - In,,

where Ip denotes the characteristic function of D. Then it is easy to observe that
all these mappings are elements of the Orlicz-Musielak space L® and that = < y,
z(t) < w(t) for t € A.
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Moreover, by (x*) and (3.1),

pol(z — 2) = /(I)(w,c)dw+/¢>(w,a+b)dw

Q1 Qo
> [[®(t,c) —e]ldw+ [ [P(t,a+b) —e]ldw = pi(c) + pr(a+b) — 2
Jireomaces ]

>pib+c)+yi(a) +2e = [ [P(t,b+c¢) +eldw+ [ [P(ta)+e]dw
/ /

2/@(w,b—i—c)dw—&—/@(w,a)dw:pq>(a:—w)
o Q2

and

P@(y—z)z/@(w,a)dw+/¢(w,b+c)dw

Q1 Qo2

< /[(I)(t,a) b o] dw+/[<1>(t,b+c) e dw = i(a) + pu(b+ ¢) + 2¢

< i(a+b)+@i(c) — 2 = /[@(ta—i—b) —eldw+ /[@(t,c) —¢]dw
Q1 Q2

g/@(w,a—&—b)dw—f—/@(w,c)dw=p<1>(y—w)'
Q1 Q2

We have shown that, for the latticially closed set D = {z, w},
Pp(z) ={w}, Pp(y)={z}, andso Pp(z)(t) > Pp(y)(t) fort e A,
and
Pp(z) ={z}, Pply)={w}, whichgives Pp(z) < Pp(y) on A.

Therefore, the projection Pp is not isotonic, while the antiprojection P is not
antiisotonic. In consequence, neither (iii) nor (iv) can be valid. This completes the
proof of our theorem. O

Remark 3.5. We have actually proved a little more, namely: If there exist ¢t € {2 with
¢ being non-convex, and {21, € ¥ satisfying (a) and such that, for w € Q7 U Qa,
Oy 18 “similar to ¢;” in the sense of (b), then (iii) and (iv) cannot hold.

Similar considerations lead us to the following additional result for the sequence
case.



196 Bartosz Micherda

Theorem 3.6. Let ®: N x Ry — Ry be a @-function with a parameter and assume
that there exist natural numbers t1 # to such that the system of inequalities

Pta ((l + b) — Pty (a‘) > Pty (b + C) — Yt (C) (32)
Pty ((l + b) - Pty (a’) > Pty (b + C) — Pty (C)

has a solution (a,b,c) with a,b,c > 0, ¢ > a. Then the conditions (iii) and (iv) from
Theorem 3.4 are not satisfied.

Proof. Set Q1 = {t1}, Q2 = {t2}, A = Q1 UQy and define simple functions z,y, z, w €
L? as in the proof of Theorem 3.4. Then, by (3.2),

pa(z — 2) = 1, () + pr,(a+b) > @1, (b +¢) + ¢, (a) = pa(z — w)
and
pa(y —2) = @1, (a) + 1, (b + ) < @, (a+b) +pr,(c) = pa(y — w).
Putting D = {z,w} and reasoning as above, we show that the operators Pp and

P73 do not possess the required properties, which proves the theorem. O

Remark 3.7. If the system (3.2) has the desired solution, then the function p;, + ¢y,
cannot be convex, and so at least one of its components is also a non-convex function.

Our final example shows that the assumptions of Theorem 3.6 can be satisfied
even in the case when (%) is not valid (and, in consequence, Theorem 3.4 does not
work).

Example 3.8.

1. Suppose that there exist two distinct numbers ¢1,t2 € N such that ¢, = ¢y, is a
non-convex function. Then it does not satisfy the Lim inequality, and consequently
(3.2) has a solution required in the previous theorem. Let us observe that in this
case Remark 3.5 could also be applied.

2. Let ¢4, () = v/z and ¢y, () = z. Then (3.2) leads to the system of inequalities

b>Vb+c—+/c,
va+b—+/a>b,

which is solved by any positive numbers a, b, ¢ such that

Va+b++va<1l<vVb+c+ye.
3. Define ¢y, (x) = In(x 4+ 1) and ¢y, () = /2. Then (3.2) can be rewritten as

b 1 b+1
lni<b/2<lng,
c+1 a+1

and this problem also has infinitely many solutions, e.g. a < d, b = 2, ¢ > d for
3—e

e—1
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