Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a new subgradient extragradient iterative algorithm with inertial extrapolation for approximating a common solution of variational inequality problems and fixed point problems of a multivalued demicontractive mapping in a real Hilbert space. We established a strong convergence theorem for our proposed algorithm under some suitable conditions and without prior knowledge of the Lipschitz constant of the underlying operator. We present numerical examples to show that our proposed algorithm performs better than some recent existing algorithms in the literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
183--203
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
- [1] Izuchukwu C., Ugwunnadi G. C., Mewomo O. T., Khan A. R., Abbas M., Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numer. Algorithms, 2018, https://doi.org/10.1007/s11075-018-0633-9
- [2] Aremu K. O., Izuchukwu C., Ugwunnadi G. C., Mewomo O. T., On the proximal point algorithm and demimetric mappings in CAT(0) spaces, Demonstr. Math., 2018, 51, 277-294
- [3] Okeke C. C., Mewomo O. T., On split equilibrium problem, variational inequality problem and fixed point problem for multivalued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2017, 9(2), 223-248
- [4] Okeke C. C., Bello A. U., Izuchukwu C., Mewomo O. T., Split equality for monotone inclusion problem and fixed point problem in real Banach spaces, Aust. J. Math. Anal. Appl., 2017, 14(2), 1-20
- [5] Izuchukwu C., Aremu K. O., Mebawondu A. A., Mewomo O. T., A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol., 2019, doi:10.4995/agt.2019.10635
- [6] Kinderlehrer D., Stampachia G., An introduction to variational inequalities and their applications, Society for Industrial and Applied Mathematics, Philadelphia, 2000
- [7] Korpelevich G. M., An extragradient method for finding saddle points and for other problems, Ekon. Mat. Metody, 1976, 12(4), 747-756
- [8] Apostol R. Y., Grynenko A. A., Semenov V. V., Iterative algorithms for monotone bilevel variational inequalities, J. Comput. Appl. Math., 2012, 107, 3-14
- [9] Ceng L. C., Hadjisavas N., Weng N. C., Strong convergence theorems by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 2010, 46, 635-646
- [10] Censor Y., Gibali A., Reich S., Extensions of Korpelevich’s extragradient method for variational inequality problems in Euclidean space, Optim., 2012, 61(9), 1119-1132
- [11] Denisov S. V., Semenov V. V., Chabak L. M., Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 2015, 51(5), 757-765
- [12] Ogbuisi F. U., Mewomo O. T., Iterative solution of split variational inclusion problem in real Banach space, Afr. Mat., 2017, 28(1-2), 295-309
- [13] Censor Y., Gibali A., Reich S., The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 2011, 148(2), 318-335
- [14] Mainge P. E., Gobinddass M. L., Convergence of one-step projected gradient methods for variational inequalities, J. Optim. Theory Appl., 2016, 171, 146-168
- [15] Mainge P. E., Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with the line-search procedure, Comput. Math. Appl., 2016, 72(3), 720-728
- [16] Malitsky Y. V., Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 2015, 25, 502-520
- [17] Bauschke H. H., Combettes P. L., A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 2001, 26(2), 248-264
- [18] Iiduka H., Acceleration method for convex optimization over the fixed point set of a nonexpansive mappings, Math. Prog. Series A., 2015, 149(1-2), 131-165
- [19] Jolaoso L. O., Ogbuisi F. U., Mewomo O. T., An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math., 2018, 9(3), 167-184
- [20] Mainge P. E., A hybrid extragradient viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 2008, 49, 1499-1515
- [21] Mewomo O. T., Ogbuisi F. U., Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces, Quaest. Math., 2018, 41(1), 129-148
- [22] Ogbuisi F. U., Mewomo O. T., On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl., 2017, 19(3), 2109-2128
- [23] Ogbuisi F. U., Mewomo O. T., Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 2018, 19(1), 335-358
- [24] Oyewole K. O., Jolaoso L. O., Izuchuwu C., Mewomo O. T., On approximation of common solution of finite family of mixed equilibrium problems involvingμ-ηrelaxed monotone mapping in a Banach space, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 2019, 81(1), 19-34
- [25] Shehu Y., Mewomo O. T., Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 2016, 32(11), 1357-1376
- [26] Censor Y., Gibali A., Reich S., Algorithms for the split variational inequalities problems, Numer. Algorithms, 2012, 59, 301-323
- [27] Thong D. V., Hieu D. V., Modified subgradient extragradient algorithms for variational inequalities problems and fixed point algorithms, Optim., 2018, 67(1), 83-102
- [28] Moudafi A. , Viscosity approximation method for fixed-points problems, J. Math. Anal. Appl., 2000, 241(1), 46-55
- [29] Xu H. K., Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl., 2004, 298(1), 279-291
- [30] Polyak B. T., Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., 1964, 4(5), 1-17
- [31] Alvarez F., Attouch H., An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 2001, 9(1-2), 3-11
- [32] Moudafi A., Oliny M., Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 2003, 155(2), 447-454
- [33] Lorenz D., Pock T., An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 2015, 51(2), 311-325
- [34] Jolaoso L. O., Oyewole K. O., Okeke C. C., Mewomo O. T., A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, Demonstr. Math., 2018, 51, 211-232
- [35] Chan R. H., Ma S., Jang J. F., Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 2015, 8(4), 2239-2267
- [36] Beck A., Teboulle M., A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2009, 2(1), 183-202
- [37] Chambolle A., Dossal Ch., On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm", J. Optim. Theory Appl., 2015, 166(3), 968-982
- [38] Mainge P. E., Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 2008, 219(1), 223-236
- [39] Bot R. I., Csetnek E. R., Hendrich C., Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math.Comput., 2015, 256, 472-487
- [40] Dong Q.-L., Lu Y. Y., Yang J., The extragradient algorithm with inertial effects for solving the variational inequality, Optim., 2016, 65(12), 2217-2226
- [41] Rockafellar R. T., Monotone operators and the proximal point algorithms, SIAM J. Control Optim., 1976, 14(5), 877-898
- [42] Song Y., Cho Y. J., Some note on Ishikawa iteration for multivalued mappings, Bull. Korean Math. Soc., 2011, 48(3), 575-584
- [43] Marino G., Xu H. K., Weak and strong convergence theorems for strict pseudo-contraction in Hilbert spaces, J. Math. Anal. Appl., 2007, 329, 336-346
- [44] Zegeye H., Shahzad N., Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive mappings, Comput. Math. Appl., 2011, 62(11), 4007-4014
- [45] Chidume C. E., Ezeora J. N., Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-contractive mappings, Fixed Point Theory Appl., 2014, 2014:111
- [46] Xu H. K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 2002, 66, 240-256
- [47] Fang C., Chen S., Some extragradient algorithms for variational inequalities, In: Han W., Migórski S., Sofonea M. (Eds.), Advances in Variational and Hemivariational Inequalities, Advances in Mechanics and Mathematics, Springer, Cham, 2015, 33, 145-171
- [48] Jailoka P., Suantai S., The split common fixed point problem for multivalued demicontractive mappings and its applications, RACSAM, 2018, https://doi.org/10.1007/s13398-018-0496-x
- [49] Figureido M. A., Norwak R. D., Wright S. J., Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problem, IEEE J. Sel. Top. Signal Process., 2007, 1, 586-598
- [50] Kraikaew R., Saejung S., Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 2014, 163(2), 399-412
- [51] Thong D. V., Hieu D. V., Modified subgradient extragradient method for variational inequality problems, Numer. Algor., 2018, 79(2), 597-610
- [52] Chuang C. S., Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications, Optim., 2017, 66(5), 777-792
- [53] Thong D. V., Hieu D. V., Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 2018, https://doi.org/10.1007/s11075-018-0527-x
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39a0e98e-5fd6-486d-b9c4-fa536bbdd621