PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Group alternating integration for distributed acoustic sensing with improved signal-to-noise ratio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Distributed acoustic sensing (DAS) based on Rayleigh backscattering is actively used for perimeter monitoring of critical infrastructure. However, traditional signal processing methods often face challenges in detecting weak or short-term events in noisy conditions. In this paper, we propose an improved signal accumulation method based on group averaging with alternating sign integration. The proposed method provides the efficient noise suppression and improves the detection of local mechanical disturbances along the fibre. Comparative simulation study between the classical and the proposed approach demonstrates a significant improvement in signal visibility in the presence of additive noise. Potential implementations of multi-layered and mesh-integrated DAS configurations are also discussed to further enhance signal-to-noise ratio (SNR). The obtained results can serve as a basis for the development of modern security systems for critical facilities.
Rocznik
Strony
art. no. e155878
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., tab.
Twórcy
  • Taizhou Research Institute of Zhejiang University, Taizhou, China
  • Chernivtsi National University, Chernivtsi, Ukraine
  • Chernivtsi National University, Chernivtsi, Ukraine
  • Taizhou Research Institute of Zhejiang University, Taizhou, China
  • Chernivtsi National University, Chernivtsi, Ukraine
autor
  • Taizhou Research Institute of Zhejiang University, Taizhou, China
Bibliografia
  • [1] Hartog, A. H. An Introduction to Distributed Optical Fiber Sensors, 1st ed. (CRC Press, Boca Raton, 2017).
  • [2] Potyrailo, R. A. et al. RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Meas. Sci. Technol. 22, 082001 (2011). https://doi.org/10.1088/0957-0233/22/8/082001.
  • [3] Lu, Y., Zhu, T., Chen, L. & Bao, X. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Light. Technol. 28, 3243–3249 (2010). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-28-22-3243.
  • [4] Masoudi, A. & Newson, T. P. Contributed review: Distributed optical fiber dynamic strain sensing. Rev. Sci. Instrum. 87, 011501 (2016). https://doi.org/10.1063/1.4939482.
  • [5] Shao, L. et al. Artificial intelligence-driven distributed acoustic sensing technology and engineering application. PhotoniX 6, 4 (2025). https://doi.org/10.1186/s43074-025-00160-z.
  • [6] Mellors, R. & Zhan, G. Listening to Earth’s Subsurface with Distributed Acoustic Sensing. EOS https://eos.org/editors-vox/listening-to-earths-subsurface-with-distributed-acoustic-sensing (2025).
  • [7] Wang, Y. et al. Optical fiber vibration sensor using least mean square error algorithm. Sensors 20, 2000 (2020). https://doi.org/10.3390/s20072000.
  • [8] Zizzo, C. Optical circulator for fiber-optic transceivers. Appl. Opt. 26, 3470-3473 (1987). https://doi.org/10.1364/AO.26.003470.
  • [9] Bao, X. & Chen, L. Recent progress in brillouin scattering based fiber sensors. Sensors 11, 4152-4187 (2011). https://doi.org/10.3390/s110404152.
  • [10] Jousset, P. et al. Dynamic strain determination using fibre-optic cables allows seismological applications. Nat. Commun. 9, 2509 (2018). https://doi.org/10.1038/s41467-018-04860-y.
  • [11] Busanello, G., Bachrach, R., Sayed, A. & Boiero, D. Surface Distributed Acoustic Sensing (S-DAS) for High-Resolution Near-Surface Characterization. in Proceedings of the 84th EAGE Annual Conference & Exhibition 1-5 (European Association of Geoscientists & Engineers, 2023). https://doi.org/10.3997/2214-4609.202310775.
  • [12] Parker, T. R., Gillies, A., Shatalin, S. V. & Farhadiroushan, M. The intelligent distributed acoustic sensing. Proc. SPIE 9157, 91573Q (2014). https://doi.org/10.1117/12.2064889.
  • [13] Bouffaut, L. et al. Distributed acoustic sensing of Baleen whales in the arctic. Front. Mar. Sci. 9, 901348 (2022). https://doi.org/10.3389/fmars.2022.901348.
  • [14] Chen, Y. et al. Denoising of distributed acoustic sensing seismic data using an integrated framework. Seismol. Res. Lett. 93, 2729-2741 (2022). https://doi.org/10.1785/0220220117.
  • [15] Sidenko, E. et al. Assessment of long-range distributed acoustic sensing (DAS) capabilities in controlled environments. J. Acoust. Soc. Am. 154, A176-A176 (2023). https://doi.org/10.1121/10.0023180.
  • [16] Angelsky, O. V., Ushenko, A. G., Ushenko, Y. A. & Pyshak, V. P. Statistical and Fractal Structure of Biological Tissue Mueller Matrix Images. in Optical Correlation Techniques and Applications Ch. 4, 213-265 (SPIE Press, 2007). https://doi.org/10.1117/3.714999.
  • [17] Gabai, H. & Eyal, A. On the sensitivity of distributed acoustic sensing. Opt. Lett. 41, 5648-5651 (2016). https://doi.org/10.1364/OL.41.005648.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39a08ee6-685e-47e7-9476-4ae32d084a86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.