PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Synthesis Gas as Fuel for a Solid Oxide Fuel Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a real need to use various efficient energy supply systems that are not aggressive towards the global environment. Hydrogen has been seen in different research papers presented in the literature as an essential fuel to generate energy in various energy storage systems. As it is well-known, it is possible to generate renewable electricity using electrolysis. The hydrogen produced can be sold as fuel for various systems, most notably its use in solid oxide fuel cells and a host of modern applications today. Current low-temperature fuel cells are ideal for hydrogen operation, but are not suitable for hydrogen mixtures. In this article, a mathematical analysis was carried out to generate electrical energy in a fuel cell, fed with synthesis gas from the residual biomass gasification process; the primary interest was the generation of electrical energy, solid oxide fuel cell (SOFC), which operate at the temperature of the gas at the outlet of the gasifier were analyzed. The practical efficiency obtained and the theoretical results of the SOFC operation were shown.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Instituto Politécnico Nacional, UPIICSA, CDMX, Av. Té 650 sn, Col. Granjas México, 08400, México
  • Instituto Politécnico Nacional, CITEDI, Instituto Politécnico Nacional 1310, 22430 Tijuana, B.C., México
  • Instituto Politécnico Nacional, UPIICSA, CDMX, Av. Té 650 sn, Col. Granjas México, 08400, México
  • Instituto Politécnico Nacional, UPIICSA, CDMX, Av. Té 650 sn, Col. Granjas México, 08400, México
  • Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco, Las Peñitas, 43900 Apan, Hgo., México
Bibliografia
  • 1. Bang-Møller, C., and Rokni M. 2010. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems. Energy Conversion and Management 51 (11): 2330–39. https://doi.org/10.1016/J.ENCONMAN.2010.04.006.
  • 2. Bove, R., and Ubertini S. 2006. Modeling Solid Oxide Fuel Cell Operation: Approaches, Techniques and Results. Journal of Power Sources 159(1): 543–59. https://doi.org/10.1016/J.JPOWSOUR.2005.11.045.
  • 3. Buonomano, A., F. Calise, M.D. d’Accadia, A. Palombo, and M. Vicidomini. 2015. Hybrid Solid Oxide Fuel Cells–Gas Turbine Systems for Combined Heat and Power: A Review. Applied Energy 156 (October): 32–85. https://doi.org/10.1016/J.APENERGY.2015.06.027.
  • 4. Burt, A.C., I.B. Celik, R.S. Gemmen, and A.V. Smirnov. 2004. A Numerical Study of Cell-to-Cell Variations in a SOFC Stack. Journal of Power Sources 126 (1–2): 76–87. https://doi.org/10.1016/J.JPOWSOUR.2003.08.034.
  • 5. Bang-Møller, C., and M. Rokni. 2010. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems. Energy Conversion and Management 51 (11): 2330–39. https://doi.org/10.1016/J.ENCONMAN.2010.04.006.
  • 6. Bove, R., and S. Ubertini. 2006. Modeling Solid Oxide Fuel Cell Operation: Approaches, Techniques and Results. Journal of Power Sources 159 (1): 543–59. https://doi.org/10.1016/J.JPOWSOUR.2005.11.045.
  • 7. Buonomano, A., F. Calise, M.D. d’Accadia, A. Palombo, and M. Vicidomini. 2015. Hybrid Solid Oxide Fuel Cells–Gas Turbine Systems for Combined Heat and Power: A Review. Applied Energy 156 (October): 32–85. https://doi.org/10.1016/J.APENERGY.2015.06.027.
  • 8. Burt, A.C., I.B. Celik, R.S. Gemmen, and A.V. Smirnov. 2004. A Numerical Study of Cell-to-Cell Variations in a SOFC Stack. Journal of Power Sources 126 (1–2): 76–87. https://doi.org/10.1016/J.JPOWSOUR.2003.08.034.
  • 9. Doherty, W., A. Reynolds, and D. Kennedy. 2010. Computer Simulation of a Biomass Gasification-Solid Oxide Fuel Cell Power System Using Aspen Plus. Energy 35 (12): 4545–55. https://doi.org/10.1016/J.ENERGY.2010.04.051.
  • 10. Doherty, W., A. Reynolds, and D. Kennedy. 2015. Process Simulation of Biomass Gasification Integrated with a Solid Oxide Fuel Cell Stack. Journal of Power Sources 277 (March): 292–303. https://doi.org/10.1016/J.JPOWSOUR.2014.11.125
  • 11. Evans, A., A. Bieberle-Hütter, J.L.M. Rupp, and L.J. Gauckler. 2009. Review on Microfabricated Micro-Solid Oxide Fuel Cell Membranes. Journal of Power Sources 194 (1): 119–29. https://doi.org/10.1016/J.JPOWSOUR.2009.03.048
  • 12. Fryda, L., K.D. Panopoulos, and E. Kakaras. 2008. Integrated CHP with Autothermal Biomass Gasification and SOFC–MGT. Energy Conversion and Management 49 (2): 281–90. https://doi.org/10.1016/J.ENCONMAN.2007.06.013.
  • 13. Guazzato, M., Mohammad Albakry, Simon P. Ringer, and Michael V. Swain. 2004. Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part II. Zirconia-Based Dental Ceramics. Dental Materials 20 (5): 449–56. https://doi.org/10.1016/J.DENTAL.2003.05.002.
  • 14. Haile, S.M. 2003. Fuel Cell Materials and Components. Acta Materialia 51 (19): 5981–6000. https://doi.org/10.1016/J.ACTAMAT.2003.08.004.
  • 15. Hayashi, H., Tetsuya Saitou, Naotaka Maruyama, Hideaki Inaba, Katsuyuki Kawamura, and Masashi Mori. 2005. Thermal Expansion Coefficient of Yttria Stabilized Zirconia for Various Yttria Contents. Solid State Ionics 176 (5–6): 613–19. https://doi.org/10.1016/J.SSI.2004.08.021.
  • 16. Ivers-Tiffée, E., André Weber, and Dirk Herbstritt. 2001. Materials and Technologies for SOFC-Components. Journal of the European Ceramic Society 21 (10–11): 1805–11. https://doi.org/10.1016/S0955–2219(01)00120–0.
  • 17. Lim, T.H., Rak Hyun Song, Dong Ryul Shin, Jung Il Yang, Heon Jung, I.C. Vinke, and Soo Seok Yang. 2008. Operating Characteristics of a 5 KW Class Anode-Supported Planar SOFC Stack for a Fuel Cell/Gas Turbine Hybrid System. International Journal of Hydrogen Energy 33 (3): 1076–83. https://doi.org/10.1016/J.IJHYDENE.2007.11.017.
  • 18. Mahmud, L.S., A. Muchtar, and M.R. Somalu. 2017. Challenges in Fabricating Planar Solid Oxide Fuel Cells: A Review. Renewable and Sustainable Energy Reviews 72 (May): 105–16. https://doi.org/10.1016/J.RSER.2017.01.019.
  • 19. Panopoulos, K.D., L. Fryda, J. Karl, S. Poulou, and E. Kakaras. 2006. High Temperature Solid Oxide Fuel Cell Integrated with Novel Allothermal Biomass Gasification: Part II: Exergy Analysis. Journal of Power Sources 159 (1): 586–94. https://doi.org/10.1016/J.JPOWSOUR.2005.11.040.
  • 20. Schlichting, K.W., N.P. Padture, and P.G. Klemens. 2001. Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia. Journal of Materials Science 2001 36:12 36 (12): 3003–10. https://doi.org/10.1023/A:1017970924312.
  • 21. Ud Din, Zia, and Z.A. Zainal. 2016. Biomass Integrated Gasification–SOFC Systems: Technology Overview. Renewable and Sustainable Energy Reviews 53 (January): 1356–76. https://doi.org/10.1016/J.RSER.2015.09.013.
  • 22. Zhang, Y. 2014. Making Yttria-Stabilized Tetragonal Zirconia Translucent. Dental Materials 30 (10): 1195–1203. https://doi.org/10.1016/J.DENTAL.2014.08.375.
  • 23. Zhu, W.Z., and S C Deevi. 2003. A Review on the Status of Anode Materials for Solid Oxide Fuel Cells. Materials Science and Engineering: A 362 (1): 228–239.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-399c4a33-eb68-461a-8ff4-717f6a510491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.