PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Application of zeolites for the adsorptive biogas desulfurization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie zeolitów do adsorpcyjnego odsiarczania biogazu
Języki publikacji
EN
Abstrakty
EN
The article presents the issue of adsorptive removal of hydrogen sulphide from biogas using zeolite. Based on literature data, comparing performance of the biogas desulphurisation process for various mineral adsorbents, eg. activated carbon, zeolites and metal oxides, was carried out. The efficiency of biogas desulphurisation by adsorption on zeolites is significantly lower than for the activated carbons. Therefore, this article presents opportunities for improving efficiency desulphurization by modifying the structure of adsorbents.
PL
W artykule omówiono zagadnienie adsorpcyjnego usuwania siarkowodoru z biogazu za pomocą zeolitów. Na podstawie danych literaturowych dokonano porównania wydajności procesu odsiarczania biogazu dla różnych mineralnych adsorbentów, np. węgla aktywnego, zeolitów i tlenków metali. Efektywność odsiarczania biogazu w wyniku adsorpcji na zeolitach jest zdecydowanie niższa niż dla węgli aktywnych. Dlatego też w niniejszym artykule przedstawiono możliwości zwiększenia skuteczności odsiarczania poprzez modyfikację struktury adsorbentów.
Rocznik
Strony
39--45
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
autor
  • Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering, Cracow University of Technology
autor
  • Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering, Cracow University of Technology
autor
  • Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering, Cracow University of Technology
Bibliografia
  • [1] Kwaśny J., Banach M., Kowalski Z., Przegląd technologii produkcji biogazu różnego pochodzenia, Czasopismo Techniczne 2-Ch/2012, 83-102.
  • [2] Hernández S.P., Scarpa F., Fino D., Conti R., Biogas purification for MCFC application, International Journal of Hydrogen Energy 36, 2011, 8112-8118.
  • [3] Biogas renewable energy, www.biogas-renewable-energy.info/ (available: 30.03.2015).
  • [4] Peu P. et al., Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates, Bioresource Technology 121, 2012, 419-424.
  • [5] Gutiérrez Ortiz F.J., Aguilera P.G., Ollero P., Biogas desulfurization by adsorption on thermally treated sewage-sludge, Separation and Purification Technology 123, 2014, 200-213.
  • [6] Pokorna D., Zabranska J., Sulfur-oxidizing bacteria in environmental technology, Biotechnology Advances, 2015, in press http://dx.doi.org/10.1016/j.biotechadv. 2015.02.007.
  • [7] Figueiredo H., Quintelas C., Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites, Journal of Hazardous Materials 274, 2014, 287-299.
  • [8] Jon H. et al., Hydrothermal conversion of FAU into *BEA zeolites, Microporous and Mesoporous Materials 96, 2006, 72-78.
  • [9] Kong Ch., Tsuru T., Zeolite nanocrystals prepared from zeolite microparticles by a centrifugation-assisted grinding method, Chemical Engineering and Processing 49, 2010, 809-814.
  • [10] Rhodes C.J., Zeolite mediated reactions: Mechanistic aspects and environmental applications, Progress in Reaction Kinetics and Mechanism 33, 1, 2008, 1-79.
  • [11] Colella C., Natural zeolites in environmentally friendly processes and applications, Studies in Surface Science and Catalysis 125, 1999, 641-655.
  • [12] Colella C., Recent advances in natural zeolite applications based on external surface interaction with cations and molecules, Studies in Surface Science and Catalysis 170, 2007, 2063-2073.
  • [13] Colella C., Natural zeolites in environmentally friendly processes and applications, [in:] Kiricsi I., Nagy J.B., Pál-Borbély G., Karge H.G., Porous Materials in Environmentally Friendly Processes, Studies in Surface Science and Catalysis 125, 1999, 641-650.
  • [14] Anielak A. M., Wojnicz M., Piaskowski K., Ocena skuteczności zastosowania zeolitów w oczyszczaniu ścieków komunalnych, Gaz, Woda i Technika Sanitarna 7-8, 2009, 27-31.
  • [15] Anielak A. M., Schmidt R., Removal of As (III) and Cr (III) on modified clinoptylolite, Polish Journal of Environmental Studies 24, 2, 2015, 477-482.
  • [16] Schmidt R., Anielak A. M., Usuwanie Cu(II) i Ni(II) na modyfikowanym klinoptylolicie, Przemysł Chemiczny 90, 4, 2011, 1-4.
  • [17] Anielak A. M., Schmidt R., Sorption of lead and cadmium cations on natural and manganese-modified zeolite, Polish Journal of Environmental Studies 20, 1, 2011, 15-19.
  • [18] Anielak A. M., Smarzyńska M., Oczyszczanie ścieków zeolitami naturalnymi w systemie SBR na oczyszczalni w Krokowej, Gaz, Woda i Technika Sanitarna 5, 2007, 30-35.
  • [19] Díaz E., Ordóñez S., Vega A., Coca J., Inverse GC investigation of the adsorption of thiophenic compounds on zeolites, Chromatographia 64, 3-4, 2006, 207-213.
  • [20] Liao J.-J., Bao W.-R., Chang L.-P., An approach to study the desulfurization mechanism and the competitive behavior from aromatics: A case study on CeY zeolite, Fuel Processing Technology, 140, 2015, 104-112.
  • [21] Ozekmekci M., Salkic G., Fellah M.F., Use of zeolites for the removal of H2S: A mini-review, Fuel Processing Technology 2015 in press.
  • [22] Nagarjuna R., Challagulla S., Alla N., Ganesan R., Roy S., Synthesis and characterization of reduced-graphene oxide/TiO2/Zeolite-4A: A bifunctional nanocomposite for abatement of methylene blue, Materials and Design 86, 2015, 621-626.
  • [23] Chalupka K.A., Maniukiewicz W., Mierczynski P., Maniecki T., Rynkowski J., Dzwigaj S., The catalytic activity of Fe-containing SiBEA zeolites in Fischer–Tropsch synthesis, Catalysis Today 257, 2015, 117-121.
  • [24] Śrębowata A., Tarach K., Girman V., Góra-Marek K., Catalytic removal of trichloroethylene from water over palladium loaded microporous and hierarchical zeolites, Applied Catalysis B: Environmental 181, 2016, 550-560.
  • [25] Behin J., Kazemian H., Rohani S., Sonochemical synthesis of zeolite NaP from clinoptilolite, Ultrasonics Sonochemistry 28, 2016, 400-408.
  • [26] Simon V., Thuret A., Candy L., Bassil S., Duthen S., Raynaud C., Masseron A., Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites, Chemical Engineering Journal 280, 2015, 748-754.
  • [27] Pandey P.K., Sharma S.K., Sambi S.S., Removal of lead(II) from waste water on zeolite-NaX, Journal of Environmental Chemical Engineering 3, 2015, 2604-2610.
  • [28] Zhao J., Wang G., Qin L., Li H., Chen Y., Liu B., Synthesis and catalytic cracking performance of mesoporous zeolite Y, Catalysis Communications 73, 2016, 98-102.
  • [29] Xu X., Yang W., Liu J., Lin L., Synthesis and perfection evaluation of NaA zeolite membrane, Separation and Purification Technology 25, 2001, 475-485.
  • [30] Kim J.-H., Kang S.W., Nah I.W., Oh I.-H., Synthesis and characterization of Fe-modified zeolite for spin conversion of hydrogen at cryogenic temperature, International Journal of Hydrogen Energy 40, 2015, 15529-15533.
  • [31] Sisani E. et al., Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems, International Journal of Hydrogen Energy 39, 2014, 21753-21766.
  • [32] Micoli L., Bagnasco G., Turco M., H2S removal from biogas for fuelling MCFCs: New adsorbing materials, International Journal of Hydrogen Energy 39, 2014, 1783-1787.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-399b6e16-bdda-428d-996f-197a8c1a0579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.