PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependences between certain petrographic, geochemical and technological indicators of coal quality in the limnic series of the Upper Silesian Coal Basin (USCB), Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article aims to assess the values of the most often measured petrographic, geochemical and technological indicators of coal quality and to identify probable dependences between them in the USCB coal. The following can also be observed: high content of Cd and Co in carbonate minerals separated from coal, in clay minerals – Cr and Zn, and in sulfide minerals – Cu, Ni and Pb. Nevertheless, it is organic matter which has the greatest influence on the average content of trace elements in coal. Correlations between the values of some of the indicators of coal quality were also observed. It has been observed that the increase in vitrinite content in coal is accompanied by a decrease in, while an increase in the content of liptinite and inertinite in coal is accompanied by an increase in the content of CaO, MgO, and SO3 in coal ash. An increase in the carbonization of organic matter is accompanied by an increase in the content of Cu and Ni in coal, and a decrease in the content of Pb and S in coal and the content of Fe2O3 in coal ash.
Rocznik
Strony
665--684
Opis fizyczny
Bibliogr. 95 poz., rys., tab., wykr.
Twórcy
  • University of Silesia, 12 Bankowa Str., 40-007 Katowice, Poland
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Bibliografia
  • [1] Blaha U., Sapkota B., Appel, E., Stanjek H., Rösler W., 2008. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atm. Environ. 42, 8359-8370.
  • [2] Bouśka V., 1981. Geochemistry of coal. Czechoslovak Academy of Sciences, Eds. Cambel B., Prague, pp. 259.
  • [3] Bytnar K., Burmistrz P., 2013. Alkalis in coal and coal cleaning products. Arch. Min. Sci. 58, 3, 913-924.
  • [4] Çayır A., Belivermiş M., Kılıç O., Coşkun M., 2012. Heavy metal and radionuclide levels in soil around Afsin-Elbistan coal-fired thermal power plants, Turkey. Environ. Earth Sci. 67, 1183-1190.
  • [5] Cebulak S., 1983. Determination of geochemical components of coal from the point of view of full utilization and envi-ronmental preservation. In: Bojkowski K., Porzycki K. (Eds.), Geological Problems Coal Basins Poland. Warsaw, 335-361.
  • [6] Chen J., Chen P., Yao D., Huang W., Tang S., Wang W., Liu W., Hu Y., Zhang B., Sha J., 2017. Abundance, distribution, and modes of occurrence of uranium in Chinese Coals. Minerals 7, 239, doi:10.3390/min7120239.
  • [7] Chodyniecka L., 1973. Carboniferous clay spherosiderites from Upper Silesian Coal Basin. Zeszyty Nauk. Polit. Śląskiej 369, Gliwice 62pp (in Polish).
  • [8] Chou C.-L., 2012. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 100, 1-13.
  • [9] Collot A.-G. 2006. Matching gasification technologies to coal properties. Int. J. Coal Geol. 65, 119-137.
  • [10] Dai S., Hou X., Ren D., Tang Y., 2003. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spactrometry. Int. J. Coal Geol. 55, 139-150.
  • [11] Dai S., Bechtel A., Eble C.F., Flores R.M., French D., Graham L.T., Hood M.M., Hower J.C., Korasidis V.A., Moore T.A., Puttmannl W., Wei Q., Zhao L., O’Keefe J.M.K., 2020a. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 219, 103383.
  • [12] Dai S., Hower J.C., Finkelman R.B., Graham I.T., French D., Ward C.R., Eskenazy G., Wei Q., Zhao L., 2020b. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 218, 103347.
  • [13] Deditius A.P., Utsunomiya S., Reich M., Kesler S.E., Ewing R.C., Hough R., Walshe J. 2011. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 42, 32-46.
  • [14] Diez M.A., Alvarez R., Barriocanal C., 2002. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int. J. Coal Geol. 50, 389-412.
  • [15] Duan P., Wang W., Liu X., 2017. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 173,129-141.
  • [16] Duan P., Wang W., Sang S., Qian F., Shao P., Zhao X., 2018a. Partitioning of hazardous elements during preparation of high-uranium coal from Rongyang, Guizhou, China. J. Geochem. Explor. 185, 81-92.
  • [17] Duan P., Wang W., Sang S., Tang Y., Ma M., Zhang W., Liang B., 2018b. Geochemistry of toxic elements and their removal via the preparation of high-uranium coal in Southwestern China. Minerals 8, 83.
  • [18] Duffus J.H., 2002. “Heavy metals” – a meaningless term? (IUPAC Technical Report). Pure Applied Chem. 74, 793-807.
  • [19] Dziok T., Strugała A., Rozwadowski A., Okońska A., 2014. Effect of selected parameters of thermal pretreatment of bi-tuminous coal on the mercury removal efficiency. Przemysł Chamiczny 93, 2034-2037.
  • [20] ECE Geneve. International Coalification System for Medium and High Rank Coals. ECE/COAL 115, Geneva, 1988.
  • [21] Finkelman R.B., Palmer C.A., Wang P., 2018. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 185, 138-160.
  • [22] Finkelman R.B., Dai S., French D., 2019. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 212, 103251.
  • [23] Gabzdyl W., 1987. Petrografia węgla. Skrypt nr 1337, Wydawnictwo Politechniki Śląskiej Gliwice (in Polish).
  • [24] Górecka E., Kozłowski A., Kibitlewski S., 1996. The Silesian-Cracow Zn-Pb deposits, Poland, considerations on ore-forming processes. In: Górecka E., Leach D.L., Kozłowski A. (Eds.), Carbonate – hosted zinc – lead deposits in the Silesian – Cracow area, Poland. Papers of the Polish Geological Institute 154, 167-182.
  • [25] Hamala K., Róg L., 2004. Wpływ składu chemicznego i właściwości fizykochemicznych węgli oraz ich popiołów na wskaźniki żużlowania i zanieczyszczenia powierzchni grzewczych kotłów energetycznych. Prace Naukowe GIG, Górnictwo i Środowisko 3, 81-109 (in Polish).
  • [26] Hower J.C., Dai S., Eskenazy G., 2016. Distribution of Uranium and Other Radionuclides in Coal and Coal Combustion Products, with Discussion of Occurrences of Combustion Products in Kentucky Power Plants. Coal Comb. Gasif. Prod. 2016, 8, 44-53, doi: 10.4177/CCGP-D-16-00002.1.
  • [27] Huang Y., Jin B., Zhong Z., Xiao R., Tang Z., Ren H., 2004. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Fuel Proc. Techn. 86, 23-32.
  • [28] Huggins F.E., Shah N., Huffman,G., Kolker A., Crowley S., Palmer C.A., Finkelman R.B., 2000. Mode of occurrence of chromium in four US coals. Fuel Proc. Techn. 63, 79-92.
  • [29] Huggins F., Goodarzi F., 2009. Environmental assessment of elements and polyaromatic hydrocarbons emitted from a Canadian coal-fired power plant. Int. J. Coal Geol. 77, 282-288.
  • [30] International Classification of Seam Coals, Final Version, 1995. Economic Commission for Europe, Committee On Energy, Working Party On Coal, Fifth Session, Genève.
  • [31] Jiang Y., Qian H., Zhou G., 2016. Mineralogy and geochemistry of different morphological pyrite in Late Permian coals, South China. Arab. J. Geosci. 9, 590.
  • [32] Jurczak-Drabek, A. 1996. Atlas petrograficzny złóż węgla kamiennego Górnośląskiego Zagłębia Węglowego, 1:300000. Państwowy Instytut Geologiczny, Warszawa (in Polish).
  • [33] Jureczka J., Kotas A., 1995. Coal deposits. In: Zdanowski, A., Żakowa, H. (Eds.), Upper Silesian Coal Basin: The Car-boniferous system in Poland, Vol. 148. The Works Polish Geological Institute, 164-173.
  • [34] Jureczka J., Dopita M., Gałka M., Krieger W., Kwarciński J., Martinec P., 2005. Atlas Geologiczno-złożowy polskiej i czeskiej części Górnośląskiego Zagłębia Węglowego. Wydawnictwo Państwowego Instytutu Geologicznego, Warszawa.
  • [35] Ketris M.P., Yudivich Ya.E., 2009. Estimations of Clarkes for Carbonaceous biolithes: World avarages for trace element contents in black shales and coals. Int. J. Coal Geol. 78, 135-148.
  • [36] Kisku G.C., Yadav S., Sharma R.K., Negi M.P.S., 2012. Potential environmental pollution hazards by coal based power plant at Jhansi (UP) India. Environ. Earth Sci. 67, 2109-2120.
  • [37] Kokowska-Pawłowska M., Nowak J., 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica-Makoszowy coal mine, Upper Silesia, soythern Poland. Acta Geologica Polonica 63, 271-281.
  • [38] Kolker A., 2012. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 94, 32-43.
  • [39] Kong L., Bai Z., Guo Z., Li W., 2014. Improvement of ash flow properties of low-rank coal for entrained flow gasifier. Fuel 120, 122-129.
  • [40] Kruszewska K., Dybova-Jachowicz S., 1987. Zarys petrologii węgla. Wyd. Uniw. Śląskiego (Ed. A. Jankowski) Kato-wice (in Polish).
  • [41] Kucha H., Lipiarski I., 1998. Mineralogy and geochemistry of sulphides from coal seams, Upper Silesian Coal Basin, Poland. Mineralogia Polonica 29, 2, 23-41.
  • [42] Kuhl J., Dąbek H., 1961. O chlorze i fosforze w węglach kamiennych Górnego Śląska. Przegląd Górniczy 17, 443-448.
  • [43] Linak W.P., Wendt J.O.L., 1993. Toxic metal emissions from incineration: mechanisms and control. Prog. Energy Com-bust. Sci. 19, 2, 145-185.
  • [44] Liu C., Zhou C., Zhang N., Pan J., Cao S., Tang M., Ji W., Hu T., 2019. Modes of occurrence and partitioning behavior of trace elements during coal preparation – A case study in Guizhou Province, China. Fuel 243, 79-87.
  • [45] Łapot W., 1992. Petrographic diversity of tonsteins from the Upper Silesian Caol Basin (GZW). Prace Nauk. Uniw. Śląskiego w Katowicach No. 1326, 1-110 (in Polish).
  • [46] Magiera T., Parzentny H.R., Róg L., Chybiorz R., Wawer M., 2015. Spatial variation of soil magnetic susceptibility in relation to different emission sources in southern Poland. Geoderma 255-256, 94-103.
  • [47] Makowska D., Bytnar K., Dziok T., Rozwadowska T., 2014. Effect of coal cleaning on the content of some heavy metals in Polish bituminous coal. Przemysł Chemiczny 93, 12, 2048-205.
  • [48] Makowska D., Strugała A., Wierońska F., Bacior M., 2018. Assessment of the content, occurrence, and leachability of arsenic, lead, and thallium in wastes from coal cleaning processes. Environ. Sci. Pollut. Research 26, 9, 8418-8428.
  • [49] Marcisz M., 2014. Zawartość fosforu z złożach monokliny Zofiówki (SW część Górnośląskiego Zagłębia Węglowego). Gospodarka Surowcami Mineralnymi – Mineral Resources Management30, 67-84 (in Polish).
  • [50] Micek E., Patyna I., Skawińska A., 2013. Wpływ zawartości siarki i chloru w węglu na zjawisko korozji w procesach spalania. Przegląd Górniczy 69, 3, 93-99 (in Polish).
  • [51] Michalik A., Bronny M., 2001. Parametry jakościowe koksu spełniające wymagania procesu wielkopiecowego, a właściwości dostępnej bazy węglowej. Karbo 46, 2, 53- 56 (in Polish).
  • [52] Mohanty M.K., Honaker R.Q., Mondal K., Paul B.C., Ho K., 1998. Trace element reductions in fine coal using advanced physical cleaning. Coal. Prep. 19, 195-211.
  • [53] Morga M., 2005. Występowanie fosfory w węglu kamiennym i jego znaczenie w produkcji koksu. Przegląd Górniczy 61, 31-32 (in Polish).
  • [54] Nieć M., Łabuś J., 1966. Występowanie barytu w kopalni węgla kamiennego Sobieski koło Jaworzna. Przegląd Geolo-giczny 14, 7, 321-323 (in Polish).
  • [55] Parzentny H.R., 1995. The influence of inorganic mineral substances on content of certain trace elements in the coal of the Upper Silesian Coalfield. Scientific Papers of Silesian University in Katowice No. 1460 (T. Jankowski Ed.) pp. 90 (in Polish).
  • [56] Parzentny H.R.,1999. Petrographic and geochemical characteristic of inorganic mineral substance aggregates in coal seam 504 in Czeladź. Przegląd Górniczy 55, 10, 32-40 (in Polish).
  • [57] Parzentny H., 2003. Solutions and vein mineralization influence on some trace elements content in selected coal seams of southern part of Upper Silesian Coal Basin. Przegląd Górniczy 59, 3, 32-37 (in Polish).
  • [58] Parzentny H.R., 2007. Petrographic, chemical-technological and geochemical characteristics of the coal from the coal seams 430 and 448 in the “Victoria” coal mine (Lover Silesian Coal Basin, LSCB). Górnictwo i Geologia 2, 4, 69-82.
  • [59] Parzentny H.T., 2008. Heterogeneities of phase and chemical composition of mineral grains in coals of Upper Silesian Coal Basin (USCB) – initial results of studies. Górnictwo i Geologia 3, 2, 65-75.
  • [60] Parzentny H.R., 2019. Differences between the content of selected ecotoxic elements in feed coal, combustion residues, soils and common beech (fagus sylvatica l.) in the surrounded of the power plant in Poland. SGEM Conf. 28.06-07.07 2019 Albeno Co Bulgaria ISSN 1314-2704.
  • [61] Parzentny H.R., Marczak M., 1990. Geochemical interpretation of chemical composition of ashes from coals coming from the Upper Silesian Coalfield. Przegląd Górniczy 46, 11-12, 34-36 (in Polish).
  • [62] Parzentny H.R., Róg L., 2017. Evaluation the value of some petrographic, physico-chemical and geochemical indicators of quality of coal in paralic series of the upper silesian coal basin and attempt to find a correlation between them. Gospodarka Surowcami Mineralnymi – Mineral Resources Management33, 1, 51-76 (in Polish).
  • [63] Parzentny H.R., Róg L., 2018. Modes of occurrence of ecotoxic elements in coal from the Upper Silesian Coal Basin, Poland. Arabian J. Geosci. doi: 10.1007/s12517-018-4134-x.
  • [64] Parzentny H.R., Róg L., 2020. Distribution of some ecotoxic elements in fuel and solid combustion residues in Poland. Energies 13, 1131.
  • [65] PN-82/G-97002. Wegiel kamienny. Typy.
  • [66] PN-G-04501:1998. Węgiel kamienny i antracyt. Pobieranie próbek pokładowych bruzdowych.
  • [67] PN-G-04502:2014-11.Węgiel kamienny i brunatny. Pobieranie i przygotowanie próbek do badań laboratoryjnych. Metody podstawowe.
  • [68] PN-ISO 7404-2:2005. Metody analizy petrograficznej węgla kamiennego (bitumicznego) i antracytu. Część 2: Metoda przygotowania próbek węgla.
  • [69] PN-ISO 7404‐3, 2009a. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite — Part 3: Method of Determining Maceral Group Composition. International Organization for Standardization, Switzerland. 7pp.
  • [70] PN-ISO 7404‐5, 2009b. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite — Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization, Swit-zerland. 14pp.
  • [71] PN-ISO 1171:2002. Paliwa stałe. Oznaczanie popiołu.
  • [72] Porada S., Grzywacz P., Czerski G., Kogut K., Makowska D., 2014. Ocena przydatności polskich węgli do procesu zgazowania. Polityka Energetyczna – Energy Policy Journal 17, 89-102 (in Polish).
  • [73] Porada S., Dziok T., Czerski G., Grzywacz P., Strugała A., 2017. Examinations of Polish brown and hard coals in terms of their use in the steam gasification process. Gospodarka Surowcami Mineralnym – Mineral Resources Manage-ment 33, 15-34.
  • [74] Probierz K., Marcisz M., Sobolewski A., 2012. Rozpoznanie warunków geologicznych występowania węgla koksowego w rejonie Jastrzębia dla potrzeb projektu „Inteligentna Koksownia”. Biuletyn PIG 452, 245 -256 (in Polish).
  • [75] Ptak B., Różkowska A., 1995. Geochemical atlas of coal deposits Upper Silesian Coal Basin. Publ. Polish Geol. Inst, Warsaw, p. 53 (in Polish).
  • [76] Querol X., Fernández-Turiel J.L., López-Soler A., 1995. Trace elements in coal and their behavior during combustion in a large power station. Fuel 74, 331-343.
  • [77] Rozwadowski A., Strugała A., 2006. Examinations of pressure generated by plastic layer during carbonization of coals with various coking properties. Gospodarka Surowcami Mineralnym – Mineral Resources Management 22, 73-81 (in Polish).
  • [78] Róg L. 2003. Wpływ budowy petrograficznej i chemicznej węgla kamiennego na temperaturę topliwości popiołu. Prace naukowe GIG, Górnictwo i Środowisko 3, 1, 73-96 (in Polish).
  • [79] Różkowska A., Parzentny H., 1990. Zawartość fosforu w węglach kamiennych Górnośląskiego Zagłębia Węglowego. Kwartalnik Geologiczny 34, 611-622 (in Polish).
  • [80] Różkowski A., Rudzińska T., Bukowy S., 1979. Thermal brines a potential Skurce of the ore mineralization of the Silesia – Cracow Area. In: Malinowski J., (Ed.), Research of the genesis of Zinc – Lead Deposits of Upper Silesia, Poland. Geol Publ Warsaw 59-85.
  • [81] Sanei H., Goodarzi F., Outridge P.M., 2010. Spatial distribution of mercury and other trace elements in recent lake sedi-ments from central Alberta, Canada: An assessment of the regional impact of coal-fired power plants. Int. J. Coal Geol. 82, 105-115.
  • [82] Sekine Y., Sakajin K., Kikuchi E., 2008. Release behavior of trace elements from coal during high-temperature process-ing. Powder Technol. 180, 1, 210-215.
  • [83] Strugała A., 1998. Substancja mineralna węgla kamiennego I jej przemiany w procesie koksowania. Gospodarka Surow-cami Mineralnym – Mineral Resources Management 14, 5-30 (in Polish).
  • [84] Strugała A., Makowska D., Bytnar K., Rozwadowska T., 2014. Analysis of the contents of selected critical elements in waste from the hard coal cleaning process. Polityka Energetyczna – Energy Policy Journal 17, 4, 77-89 (in Polish).
  • [85] Świetlik U., 2000. Chlor w węglu – występowanie i zachowanie w procesach technicznych. Karbo 45, 358-363 (in Polish).
  • [86] Teichmüller M., Teichmüller R., 1979. Diagenesis of coal (Coalification). In: Larsen Chilingar G.V. (Eds.), Diagenesis in sediments and sedimentary rocks. Developments in Sedimentary 25A., Elsevier, Amsterdam.
  • [87] Turhan S., 2019. Evaluation of agricultural soil radiotoxic element pollution around a lignite-burning thermal power plant. Radiochim. Acta 107, doi.org/10.1515/ract-2018-3051.
  • [88] Vasconcelos L.S., 1999. The petrographic composition of world coals. Statistical results obtained from a literature survey with reference to coal type (maceral composition). Int. J. Coal Geol. 40, 27-58.
  • [89] Veneva L., Hoffmann V., Jordanova D., Jordanova N., Fehr T., 2004. Rock magnetic, mineralogical and microstructural characterization of fly ashes from Bulgarian power plants and the nearby anthropogenic soils. Physic. Chem. Earth 29, 1011-1023.
  • [90] Ward C.R., 2016. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 165, 1-27.
  • [91] Wierońska F., Makowska D., Strugała A., Bytnar K., 2019. Analysis of the content of nickel, chromium, lead and zinc in solid products of coal combustion (CCPs) coming from Polish power plants. IOP Publishing Conf. Series: Earth Environ. Sci. 214, 012029, doi:10.1088/1755-1315/214/1/012029.
  • [92] Xu M., Yan R., Zheng C., Oiao Y., Han J., Sheng C., 2003. Status of trace element emission in a coal combustion process: a review. Fuel Proc. Techn. 85, 215-237.
  • [93] Yudovich Ya.E., Ketris M.P., 2005. Toxic trace elements in coals. Russian Acadamie of Sciences, Ekaterinburg, 1-655 (in Russian).
  • [94] Zhao S., Duan Y., Li Y., Liu M., Lu J., Ding Y., Gu X., Tao J., Du M., 2018. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel 2014, 597-606.
  • [95] Zubovic P., Stadnichenko T., Sheffey N.B., 1964. Distribution of minor elements in coal beds of the Eastern Interior Region. Geol. Survey Bulletin, 1117-B, 1-41.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3997f072-98c6-4320-a791-fa5e37e8eb00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.