PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of the potential of concentrated NaCl solutions for use in pressure-retarded osmosis process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pressure retarded osmosis is a process that enables useful work generation from the salinity difference of solutions. The literature most often considers using pressure retarded osmosis with natural sodium chloride (NaCl) solutions, such as seawater, dedicated for open systems. To explore the full potential of this process, however, optimized, highly concentrated solutions of various compounds can be used. The presented research is focused on evaluating the impact of increasing draw solution temperature and concentration on the permeate flow in the osmotic process. The permeate flow is directly related to achievable work in this process, therefore, it is important to find feed and draw solution parameters that maximize it. An experimental setup developed in this study provides full control over the process parameters. Furthermore, the performance characteristics of the membrane over process time were investigated, as it became evident during preliminary experiments that the membrane impact is significant. The studies were conducted without back-pressure, in a configuration typical of the forward osmosis process, with solution circulation on both sides of the membrane. The obtained results show a clear positive impact of both the temperature and concentration increase on the potential output of a pressure retarded osmosis system. The membrane behaviour study allowed for correct interpretation of the results, by establishing the dynamics of the membrane degradation process.
Rocznik
Strony
137--143
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
Bibliografia
  • [1] Logan, B.E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488, 313–319. doi: 10.1038/nature11477
  • [2] Thorsen, T., & Holt, T. (2009) The potential for power production from salinity gradients by pressure retarded osmosis. Journal of Membrane Science, 335, 103-110. doi: 10.1016/j.memsci.2009.03.003
  • [3] Francis, L., Ogunbiyi, O., Saththasivam, J., Lawler, J., & Liu, Z. (2020). A comprehensive review of forward osmosis and niche applications. Environmental Science: Water Research and Technology, 6, 1986–2015. doi: 10.1039/D0EW00181C
  • [4] Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A., & Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review. Desalination, 459, 59–104. doi: 10.1016/j.desal.2019.02.008
  • [5] Kim, Y.C., & Elimelech, M. (2013). Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: analysis and experiments. Journal of Membrane Science, 429, 330-337. doi: 10.1016/j.memsci.2012.11.039
  • [6] Helfer, F., Lemckert, C., & Anissimov, YG. (2014). Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review. Journal of Membrane Science, 453, 337-358. doi: 10.1016/j.memsci.2013.10.053
  • [7] Islam, M.S. (2018) Highly effective organic draw solutions for renewable power generation by closed-loop pressure retarded osmosis. Energy Conversion and Management, 171, 1226-1236.doi.org/10.1016/j.enconman.2018.06.031
  • [8] Hickenbottom, K.L., Vanneste, J., & Cath, T.Y. (2016) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. Journal of Membrane Science, 504, 162–75. doi: 10.1016/j.memsci.2016.01.001
  • [9] Adhikary, S., Islam, M.S., Touati, K., Sultana, S., Ramamurthy, A.S., & Rahaman, M.S. (2020). Increased power density with low salt flux using organic draw solutions for pressure-retarded osmosis at elevated temperatures. Desalination, 484,114420. doi:10.1016/j.desal.2020.114420
  • [10] McGinnis, R.L., McCutcheon, J.R., & Elimelech, M. (2007). A novel ammonia–carbon dioxide osmotic heat engine for power generation. Journal of Membrane Science, 305(1-2), 13–19.doi.org/10.1016/j.memsci.2007.08.027
  • [11] Wang, Q., Cheng, H., Wang, J., Ma, Z., Liu, Z., Sun, Z., Xu, D., Gao, J., & Gao, X. (2021). Temperature-enhanced pressure retarded osmosis powered by solar energy : Experimental validation , economic consideration , and potential implication. Chemical Engineering Research and Design, 170, 380–388. doi:10.1016/j.cherd.2021.04.024
  • [12] Madsen, H.T., Bruun Hansen, T., Nakao, T., Goda, S., & Søgaard, E.G. (2020). Combined geothermal heat and pressure retarded osmosis as a new green power system. Energy Conversion and Management, 226, 113504. doi: 10.1016/j.enconman.2020.113504
  • [13] Bajraktari, N., Hélix-Nielsen, C., & Madsen, H.T. (2017). Pressure retarded osmosis from hypersaline sources, Desalination, 413, 65–85. doi: 10.1016/j.desal.2017.02.017
  • [14] He, W., Wang, Y., & Shaheed, M.H. (2014). Energy and thermodynamic analysis of power generation using a natural salinity gradient based pressure retarded osmosis process, Desalination, 350, 86–94. doi: 10.1016/j.desal.2014.07.015
  • [15] Jalab, R., Awad, A.M., Nasser, M.S., Minier-Matar, J., & Adham, S. (2020). Pilot-scale investigation of flowrate and temperature influence on the performance of hollow fiber forward osmosis membrane in osmotic concentration process. Journal of Environmental Chemical Engineering, 8(6), 104494. doi: 10.1016/j.jece.2020.104494
  • [16] Han, G., Ge, Q., & Chung, T.S. (2014). Conceptual demonstration of novel closed-loop pressure retarded osmosis process for sustainable osmotic energy generation. Applied Energy, 132,383–393. doi: 10.1016/j.apenergy.2014.07.029
Uwagi
1. This work was financially supported by the National Science Centre (Poland) within project no. 2021/43/B/ST8/02968 enti-tled "Development of the advanced micro-macroscopic model of transport phenomena in the pressure-retarded osmosis (PRO) process", POB Energy of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme within ENERGYTECH-1 project, and the Scientific Council of the Discipline of Environmental Engineering, Min-ing and Energy of the Warsaw University of Technology.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39977f49-0c02-40ce-b1ac-33c65aa4e89f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.