PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The estimation of water erosion with RUSLE and deposition model : A case study of the Bin El-Ouidane dam catchment area (High Atlas, Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water erosion is a critical issue for Morocco, especially in its semi-arid regions, where climatic and edaphic conditions only allow erratic soil formation and vegetation growth. Therefore, water erosion endangers human activity both directly (loss of arable land, landslides, mudflows) and indirectly (siltation of dams, river pollution). This study is part of the Kingdom’s effort to assess the risk of water erosion in its territory. It is dedicated to the Bin El-Ouidane dam water catchment, one of the biggest water storage facilities in the country, located in the High Atlas Mountains. The poorly developed soils are very sensitive to erosion in this mountainous area that combines steep slopes and sparse vegetation cover. The calculation of soil losses is carried out with the RUSLE model and corrected by estimating areas of deposition based on the unit stream power theory. This method produces a mean erosion rate of around 6.3 t·ha-1·y-1, or an overall annual loss of 4.1 mln t, consistently with the siltation rate of the dam. Primary risk areas (erosion rates > 40 t·ha-1·y-1) account for 54% of the total losses, while they cover only 7% of the catchment. This distribution of the soil losses also shows that the erosion risk is mainly correlated to slope, directing the means of control toward mechanical interventions.
Wydawca
Rocznik
Tom
Strony
136--147
Opis fizyczny
Bibliogr. 45 poz., mapy, rys., tab.
Twórcy
autor
  • University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, Av Med V, BP 591, Beni-Mellal 23000, Morocco
  • Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, France
  • University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, Av Med V, BP 591, Beni-Mellal 23000, Morocco
  • University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Environmental, Ecological and Agro-industrial Engineering Laboratory, Beni-Mellal, Morocco
  • University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, Av Med V, BP 591, Beni-Mellal 23000, Morocco
  • University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, Av Med V, BP 591, Beni-Mellal 23000, Morocco
Bibliografia
  • Abaoui, J. et al. (2005) “Cartographie de l’érosion hydrique en zone montagneuse : cas du basin versant des Ait Bou Goumez, Haut Atlas, Maroc [Mapping of water erosion in mountainous areas: case of the Ait Bou Goumez watershed, High Atlas, Morocco],” Estudios Geológicos, 61(1), pp. 33–39.
  • Aboulabbes, O. (2004) Etudes de diagnostic en hydrogéologie du SIBE de Tamga [Hydrogeological diagnostic of the Tamga’s site of biological and environmental interest]. Rabat: Haut Commissariat aux Eaux et Forêts et à la Lutte contre la Désertification.
  • Al Zitawi, F. (2006) Using RUSLE in prediction of soil loss for selected sites in North and North West of Jordan. Irbid: Jordan University of Science and Technology.
  • Arnoldus, H.M. (1980) “An approximation of the rainfall factor in the Universal Soil Loss Equation,” in M. De Boodt, D. Gabriels (eds.) Assessment of erosion. Chichester: John Wiley and Sons, pp. 127–132.
  • Badraoui, A. and Hajji, A. (2001) “Envasement des retenues de barrages [Silting in dam basins],” La Houille Blanche, 87(6–7), pp. 72–75. Available at: https://doi.org/10.1051/lhb/2001073.
  • Diallo, D. (2000) Erosion des sols en zone soudanienne du Mali – Transfert des matériaux érodés dans le bassin versant de Djitiko (Haut Niger) [Soil erosion in the Sudanian zone of Mali – Transfer of eroded materials in the Djitiko watershed (Upper Niger)]. Grenoble: Université Joseph Fourier.
  • FAO (2015) Status of the World’s soil resources. Rome: Foods and Agriculture Organization of the United Nations.
  • Fox, H.R. et al. (1997) “Soil erosion and reservoir sedimentation in the High Atlas Mountains, southern Morocco,” in D.E. Walling and J-L. Probst (eds.) Human impact on erosion and sedimentation, IAHS Publication, 245, pp. 233–240.
  • Geddes, N. and Dunkerley, D. (1999) “The influence of organic litter on the erosive effects of raindrops and of gravity drops released from desert shrubs,” Catena, 36(4), pp. 303–313. Available at: https://doi.org/10.1016/S0341-8162(99)00050-8.
  • Gray, D. (2016) “Effect of slope shape on soil erosion,” Journal of Civil & Environmental Engineering, 6(3), 231. Available at: https://doi.org/10.4172/2165-784X.1000231.
  • Hara, F. et al. (2020) “Study of soil erosion risks using RUSLE model and remote sensing: case of the Bouregreg watershed (Morocco),” Proceedings of IAHS, 383, pp. 159–162. Available at: https://doi.org/10.5194/piahs-383-159-2020.
  • Heusch, B. (1970) L’érosion du pré-rif : une étude quantitative de l’érosion hydraulique dans les collines marneuses du pré-rif occidental [Pre-rif erosion: a quantitative study of hydraulic erosion in the marl hills of the western pre-rif]. Rabat: Station de Recherches Forestières de Rabat.
  • Julien, P.Y. (2010) Erosion and sedimentation. Cambridge: Cambridge University Press.
  • Khemiri, K. and Jebari, S. (2021) “Evaluation de l’érosion hydrique dans les bassins versants de la zone semi-aride tunisienne avec les modèles RUSLE et MUSLE couplés à un système d’information géographique [Assessment of water erosion in the watersheds of the Tunisian semi-arid zone with the RUSLE and MUSLE models coupled to a GIS],” Cahiers Agricultures, 30, 7. Available at: https://doi.org/10.1051/cagri/2020048.
  • Kouli, M., Soupios, P. and Vallianatos, F. (2008) “Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Nothwestern Crete, Greece,” Environmental Geology, 57(3), pp. 483–497. Available at: https://doi.org/10.1007/s00254-008-1318-9.
  • Le Bissonnais, Y. et al. (1998) “Crusting, runoff and sheet erosion on silty loamy soils at various scales and upscaling from m² to small catchments,” Soil & Tillage Research, 46, pp. 69–80. Available at: https://doi.org/10.1016/S0167-1987(98)80109-8.
  • Lee, S., Wolberg, G. and Shin, S.Y. (1997) “Scattered data interpolation with multilevel B-splines,” IEEE Transactions on Visualization and Computer Graphics, 3(3), pp. 228–244. Available at: https://doi.org/10.1109/2945.620490.
  • Liu, B.Y. et al. (2000) “Slope length effects on soil loss for steep slopes,” Soil Science Society of American Journal,” 64(5), pp. 1759–1763. Available at: https://doi.org/10.2136/sssaj2000.6451759x.
  • Liu, B.Y., Zhang, K. and Yun, X. (2002) “An empirical soil loss equation,” Proceedings of the 12 th ISCO Conference, 2, pp. 21–25.
  • Ludwig, B. (2000) “Les déterminants agricoles du ruissellement et de l’érosion – De la parcelle au bassin versant [Agricultural determinants of runoff and erosion – From plot to watershed],” Ingénieries, 22, pp. 37–47.
  • MAEF (2013) Programme d’action national de lutte contre la désertification [National action programme to combat desertification]. Rabat: Ministère de l’agriculture, du développement rural et des eaux et forêts.
  • Maimouni, S. et al. (2011) “Potentiels et limites des indices spectraux pour caractériser la dégradation des sols en milieu semi-aride [Potential and limitations of spectral indices to characterise soil degradation in semi-arid environments],” Canadian Journal of Remote Sensing, 37(3), pp. 285–301. Available at: https://doi.org/10.5589/m11-038.
  • Manaouch, M., Zouagui, A. and Fenjiro, I. (2021) “A review of soil erosion modeling by R/USLE in Morocco: Achievements and limits,” E3S Web of Conferences, 234, pp. 1–7. Available at: https://doi.org/10.1051/e3sconf/202123400067.
  • Meliho, M. et al. (2016) “Cartographie des risques de l’érosion hydrique par l’équation universelle révisée des pertes en sols, la télédétection et les SIG dans le bassin versant de l’Ourika (Haut Atlas, Maroc) [Water erosion risk mapping using the revised universal soil loss equation, remote sensing and GIS in the Ourika watershed (High Atlas, Morocco)],” European Scientific Journal, 12(32), pp. 277–297. Available at: https://doi.org/10.19044/esj.2016.v12n32p277.
  • Merzouki, T. (1992) “Diagnostic de l’envasement des grands barrages marocains [Diagnosis of silting in large Moroccan dams],” Revue Marocaine du Génie Civil, 38, pp. 46–50.
  • Migniot, C. (1989) “Tassement et rhéologie des vases. Première partie [Bedding-down and rheology of muds],” La Houille Blanche, 75 (1), pp. 11–29. Available at: https://doi.org/10.1051/lhb/1989001.
  • Millington, A.C. and Townshend, J.R. (1984) “Remote sensing applications in African erosion and sedimentation studies,” Proceedins of the IAHS Harare Symposium, 144, pp. 373–384.
  • Mitasova, H. et al. (1996) “Modelling topographic potential for erosion and deposition using GIS,” International Journal of Geographical Information Systems, 10(5), pp. 629–641. Available at: https://doi.org/10.1080/02693799608902101.
  • Mitasova, H. et al. (2013) “GIS-based soil erosion modelling,” Treatise on Geomorphology, 3, pp. 228–258. Available at: https://doi.org/ 10.1016/B978-0-12-374739-6.00052-X.
  • Moore, I.D. and Burch, G.J. (1986) “Modelling erosion and deposition: topographic effects,” Transactions of the American Society of Agricultural and Biological Engineers, 29(6), pp. 1624–1630. Available at: https://doi.org/10.13031/2013.30363.
  • Naslhaj, J. (2009) Evaluation de l’érosion des sols et proposition d’aménagement du bassin versant à l’aval du barrage de Hassan II, Haute Moulouya, Maroc [Soil erosion assessment and watershed management proposal downstream of the Hassan II dam, Upper Moulouya, Morocco]. Rabat: Institut Agronomique et Vétérinaire Hassan II.
  • Nouaim, W. et al. (2022) “Assessing the intra-annual variability of agricultural soil losses: a RUSLE application in Nord-Pas-de-Calais, France,” 52, pp. 210–220. Available at: https://doi.org/10.24425/jwld.2022.140392
  • O’Loughlin, C. and Zhang, X.B. (1986) “The influence of fast-growing conifer plantations on shallow landsliding and earthflow movement in New Zealand steeplands,” IUFRO Yugoslavia, 1, pp. 217–226.
  • Pajot, G. (1963) Etude des sols du Pré-Rif [Pre-Rif soil survey]. Rabat: Institut National de Recherche Agricole.
  • Panagos, P. et al. (2014) “Soil erodibility in Europe: A high-resolution dataset based on LUCAS,” Science of the Total Environment, 479–480, pp. 189–200. Available at: https://doi.org/10.1016/j.scito-tenv.2014.02.010
  • Renard, K.G. et al. (1997) “Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE),” Agriculture Handbook, 703. Tucson: U.S. Department of Agriculture.
  • Roose, E. (1973) Dix-sept années de mesures expérimentales de l’érosion et du ruissellement sur un sol ferrallitique sableux de basse Côte d’Ivoire : contribution à l’étude de l’érosion hydrique en milieu intertropical [17 years of experimental measurements of erosion and runoff on a ferrallitic sandy soil of the lower Ivory Coast: contribution to the study of water erosion in an intertropical environment]. Abidjan: ORSTOM.
  • Roose, E. and Bertrand, R. (1971) “Contribution à l’étude des méthodes des bandes d’arrêt pour lutter contre l’érosion hydrique en Afrique de l’Ouest : résultats expérimentaux et observations sur le terrain [Contribution to the study of stop strip methods for water erosion control in West Africa: experimental results and field observations],” Agronomie Tropicale, 26(11), pp. 1270–1283.
  • Schertz, D. (1983) “The basis for soil loss tolerances,” Journal of Soil and Water Conservation, 38, pp. 10–15.
  • Schmidt, S., Alewell, C. and Meusburger, K. (2018) “Mapping spatiotemporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland,” Remote Sensing of Environment, 211, pp. 89–104. Available at: https://doi.org/10.1016/j.rse.2018.04.008.
  • Schmidt, S., Tresch, S. and Meusburger, K. (2019) “Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands,” MethodsX, 6, pp. 219–229. Available at: https://doi.org/10.1016/j.mex.2019.01.004.
  • Stone, R.P. and Hilborn, D. (2000) Universal Soil Loss Equation: Factsheet. Guelph: Ontario’s Ministry of Agriculture, Food and Rural Affairs.
  • Winchell, M.F. et al. (2008) “Extension and validation of a geographic information system-based method for calculating the revised universal soil loss equation length-slope factor for erosion risk assessments in large watersheds,” Journal of Soil and Water Conservation, 63(3), pp. 105–111. Available at: https://doi.org/10.2489/jswc.63.3.105.
  • Wischmeier, W.H. and Smith D.D. (1978) “Predicting rainfall erosion losses – A guide to conservation planning,” Agriculture Handbook, 537. Washington, D.C.: U.S. Department of Agriculture.
  • Wischmeier, W.H., Smith, D.D. and Uhland, R.E. (1958) “Evaluation of factors in the soil loss equation,” Agricultural Engineering, 39, pp. 458–462.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3995e539-622f-4354-a34d-94cc9d6795c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.