PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dopant-Based Charge Sensing Utilizing P-I-N Nanojunction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We studied lateral silicon p-i-n junctions, doped with phosphorus and boron, regarding charge sensing feasibility. In order to examine the detection capabilities and underlying mechanism, we used in a complementary way two measurement techniques. First, we employed a semiconductor parameter analyzer to measure I−V characteristics at a low temperature, for reverse and forward bias conditions. In both regimes, we systematically detected Random Telegraph Signal. Secondly, using a Low Temperature Kelvin Probe Force Microscope, we measured surface electronic potentials. Both p-i-n junction interfaces, p-i and i-n, were observed as regions of a dynamic behaviour, with characteristic time-dependent electronic potential fluctuations. Those fluctuations are due to single charge capture/emission events. We found analytically that the obtained data could be explained by a model of two-dimensional p-n junction and phosphorus-boron interaction at the edge of depletion region. The results of complementary measurements and analysis presented in this research, supported also by the previous reports, provide fundamental insight into the charge sensing mechanism utilizing emergence of individual dopants.
Rocznik
Strony
391--399
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Mechatronics, Św. A. Boboli 8, 02-525 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Św. A. Boboli 8, 02-525 Warsaw, Poland
Bibliografia
  • [1] Mahadevan, V., Sethuraman, S. (2003). Nanomaterials and Nanosensors for Medical Applications. Trends in Nanoscale Mechanics, 9, 207.
  • [2] Khanna, V.K. (2011). Nanosensors: Physical, Chemical, and Biological. CRC Press.
  • [3] Guo, J., Kan, E.C., Ganguly, U., Zhang Y. (2006). High sensitivity and nonlinearity of carbon nanotube charge-based sensors. J. Appl. Phys., 99, 084301.
  • [4] Neumann, C., Volk, C., Engels, S., Stampfer, C. (2013). Graphene-based charge sensors. Nanotechnology 24, 44.
  • [5] Kang, M., Kim, Y.A., Yun, J.M., Khim, D., Kim, J., Noh, Y.Y., Baeg, K.J., Kim, D.Y. (2014). Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. Nanoscale, 6, 12315.
  • [6] Sze, S.M. (1981). Physics of Semiconductor Devices. 2nd ed. John Wiley & Sons, New York.
  • [7] Yang, C., Barrelet, C.J., Capasso, F., Lieber, C.M. (2006). Single p-Type/Intrinsic/n-Type Silicon Nanowires as Nanoscale Avalanche Photodetectors. Nano Lett., 6, 2929.
  • [8] Nowak, R., Moraru, D., Mizuno, T., Jabłoński, R., Tabe, M. (2014). Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy. Thin Solid Films, 557, 249.
  • [9] Rommel, M., Jambreck, J.D., Lemberger, M., Bauer, A.J., Frey, L., Murakami, K., Richter, C., Weinzierl, P. (2013). Influence of parasitic capacitances on conductive AFM I-V measurements and approaches for its reduction. J. Vac. Sci. Technol., B 31, 01A108.
  • [10] Ligowski, M., Moraru, D., Anwar, M., Mizuno, T., Jabloński, R., Tabe, M. (2008). Observation of individual dopants in a thin silicon layer by low temperature Kelvin Probe Force Microscope. Appl. Phys. Lett. 93, 14210.
  • [11] Simoen, E., Dierickx, B., Claeys, C.L., Declerck, G.J. (1992). Explaining the amplitude of RTS noise in submicrometer MOSFETs. IEEE Trans. Electron Devices, 39, 422.
  • [12] Amarasinghea, N.V., Çelik-Butlerb, Z., Zlotnicka, A., Wang, F. (2003). Model for random telegraph signals in sub-micron MOSFETS. Solid-State Electron., 47, 1443.
  • [13] Lee, J.W., Shin, H., Lee, J.H. (2010). Characterization of random telegraph noise in gate induced drain leakage current of n- and p-type metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett., 96, 043502.
  • [14] Udhiarto, A., Moraru, D., Purwiyanti, S., Mizuno, T., Tabe, M. (2012). Photon-Induced Random Telegraph Signal Due to potential Fluctuation of a Single Donor-Acceptor Pair in Nanoscale Si p-n Junctions. Appl. Phys. Express, 5, 112201.
  • [15] Nonnenmacher, M., O’Boyle, M.P., Wickramasinghe, H.K. (1991). Kelvin probe force microscopy. Appl. Phys. Lett., 58, 2921.
  • [16] Anwar, M., Nowak, R., Moraru, D., Udhiarto, A., Mizuno, T., Jabłoński, R., Tabe, M. (2011). Effect of electron injection into phosphorus donors in silicon-on-insulator channel observed by Kelvin probe force microscopy. Appl. Phys. Lett., 99, 213101.
  • [17] Kassies, R., van der Werf, K.O., Bennink, M.L., Otto, C. (2004). Removing interference and optical feedback artifacts in atomic force microscopy measurements by application of high frequency laser current modulation. Rev. Sci. Instrum., 75, 689.
  • [18] Nowak, R., Moraru, D., Mizuno, T., Jabłoński, R., Tabe, M. (2013). Effects of deep-level dopants on the electronic potential of thin Si pn junctions observed by Kelvin probe force microscope. Appl. Phys. Lett., 102, 083109.
  • [19] White, M.H., Cricchi, J.R. (1972). Characterization of thin-oxide MNOS memory transistors. IEEE Trans. Electron Devices, 19, 1280.
  • [20] Nowak, R., Anwar, M., Moraru, D., Mizuno, T., Jablonski, R., Tabe, M. (2012). Observation of charging and discharging effects of dopant atoms in nanoscale lateral pn junction by Kelvin probe force microscope. International Conference on Solid State Devices and Materials, Kyoto.
  • [21] Achoyan, A.S., Yesayan, A.E., Kazaryan, E.M., Petrosyan, S.G. (2002). Two-dimensional p-n-junction under equilibrium conditions. Semiconductors, 36, 903.
  • [22] Tyszka, K., Moraru, D., Samanta, A., Mizuno, T., Jabłoński, R., Tabe, M. (2015). Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy. J. Appl. Phys., 117, 244307.
  • [23] Foty, D. (1990). Impurity ionization in MOSFETs at very low temperature. Cryogenics, 30, 1056.
  • [24] Diarra, M., Niquet, Y.M., Delerue, C., Allan, G. (2007). Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B, 75, 045301.
  • [25] Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O. (2010). Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol., 5, 133.
  • [26] Purwiyanti, S., Nowak, R., Moraru, D., Mizuno, T., Hartanto, D., Jabłoński, R., Tabe, M. (2013). Dopantinduced random telegraph signal in nanoscale lateral silicon pn diodes at low temperatures. Appl. Phys. Lett., 103, 243102.
  • [27] Moraru, D., Purwiyanti, S., Nowak, R., Mizuno, T., Udhiarto, A., Hartanto, D., Jabłoński, R., Tabe, M. (2014). Individuality of dopants in silicon nano-pn junctions. Materials Science, 20, 129.
  • [28] Reuter, D., Werner, C., Wieck, A.D., Petrosyan, S. (2005). Depletion characteristics of two-dimensional lateral pn-junctions. Appl. Phys. Lett., 86, 162110.
  • [29] McCallum, J.C., Jamieson, D.N., Yang, C., Alves, A.D., Johnson, B.C., Hopf, T., Thompson, S.C., van Donkelaar, J.A. (2012). Single-ion implantation for the development of Si-based MOSFET devices with quantum functionalities. Adv. Mater. Sci. Eng., 2012, 272694.
  • [30] Lee, W., McKibbin, S., Thompson, D., Xue, K., Scappucci, G., Bishop, N., Celler, G., Carroll, M., Simmons, M. (2014). Lithography and doping in strained Si towards atomically precise device fabrication. Nanotechnology, 25, 145302.
  • [31] Kuzuya, Y.,Moraru, Mizuno, T., Tabe, M., Mizuta, H. (2012). Electronic states of pn junction in silicon nano structure. The 59th JSAP Spring Meeting, Matsuyama.
  • [32] Nowak, R. (2013). Observation of Dopant-induced potential in Nanoscale Si pn Junctions by Kelvin Probe Force Microscope. Ph.D. Thesis. Shizuoka University.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-398193e3-6551-4be8-87cf-db9844910546
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.