PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of laser treatment parameters on temperature distribution and thickness of laser-alloyed layers produced on Nimonic 80A-alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper was to determine the influence of laser treatment parameters on temperature distribution and thickness of laser-alloyed layers produced on Nimonic 80A-alloy. Design/methodology/approach: In this paper laser alloying was used in order to produce layers on Nimonic 80A-alloy surface. The three types of the alloying materials were applied: B, B+Nb and B+Mo. Microstructure observations were carried out using an optical microscope. The hardness measurements were performed using a Vickers method under a load of 0.981 N. For evaluation of temperature distribution the equations developed by Ashby and Esterling were used. Findings: The produced layers consisted of re-melted zone only and were characterized by high hardness (up to 1431 HV0.1). The increase in laser beam power caused an increase in thickness and decrease in hardness of re-melted zones. The temperature distribution was strongly dependent on laser treatment parameters and physical properties of alloying material. The higher laser beam power, used during laser alloying with boron, caused an increase in layer thickness and temperature on the treated surface. The addition of Mo or Nb for alloying paste caused changes in melting conditions. Research limitations/implications: The obtained results confirmed that laser beam power used for laser alloying influenced the thickness and hardness of the produced layers. Moreover, the role of type of alloying material and its thermal properties on melting condition was confirmed. Practical implications: Laser alloying is the promising method which can be used in order to form very thick and hard layers on the surface of Ni-base alloys. The obtained microstructure, thickness and properties strongly dependent on laser processing parameters such as laser beam diameter, laser beam power, scanning rate as well as on the type of alloying material and its thickness, or type of substrate material. Originality/value: In this paper the influence of alloying material on temperature distribution, thickness and hardness of the laser-alloyed layers was in details analyzed.
Rocznik
Strony
67--78
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • [1] W.M. Steen, J. Mazumder, Laser Material Processing, Springer, New York, 2010.
  • [2] J. Kusiński, Lasery i ich zastosowanie w inżynierii materiałowej, Wydawnictwo Naukowe Akapit, Kraków, 2000.
  • [3] G.P. Rodriguez, I. Gracia, J. Damborenea, Effects of Laser Surface Modification of Nimonic with Aluminum on Oxidation Behavior, Oxidation of Metals 58/1-2 (2002) 235-248, DOI: 10.1023/A: 1016028911317.
  • [4] M. Kulka, P. Dziarski, N. Makuch, A. Piasecki, A. Miklaszewski, Microstructure and properties of laser-borided Inconel 600-alloy, Applied Surface Science 284 (2013) 757-771, DOI: 10.1013/j.apsusc.2013.07.167
  • [5] M. Kulka, N. Makuch, P. Dziarski, D. Przestacki, Laser-borided layer formed on Inconel 600 alloy, Inżynieria Materiałowa 6 (2013) 733-736.
  • [6] P. Dziarski, M. Kulka, N. Makuch, D. Mikołajczak, Corrosion resistance of laser-borided Inconel 600 alloy, Inżynieria Materiałowa 3 (2017) 149-156.
  • [7] J.D. Majumdar, I. Manna, Laser-Surface Alloying of Nimonic 80 with Silicon and Aluminum and its Oxidation Behavior, Metallurgical and Materials Transactions A 43 (2012) 3786-3796.
  • [8] K.P. Cooper, P. Slebodnick, E.D. Thomas, Seawater corrosion behavior of laser surface modified Inconel 625 alloy, Materials Science and Engineering A 206 (1996) 138-149.
  • [9] J. Słoma, M. Tacikowski, M. Woźniak, E. Łunarska, T. Wierzchoń, Struktura i właściwości warstw kompozytowych typu Al2O3+Al-Ni na stopie Inconel 600 wytwarzanych metodą dwustopniową, Inżynieria Materiałowa 6 (2004) 885-889 (in Polish).
  • [10] N. Makuch, A. Piasecki, P. Dziarski, M. Kulka, Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy, Optics and Laser Technology 75 (2015) 229-239, DOI: 10.1016.j.optlastec.2015.07.015.
  • [11] S. Cao, D. Gu, Q. Shi, Relation of microstructure, microhardness and underlying thermodynamics in molten pools of laser melting deposition processed TiC/Inconel 625 composites, journal of Alloys and Compounds 692 (2017) 758-769.
  • [12] B.S. Yilbas, S.S. Akhtar, C. Karatas, Laser gas assisted nitriding of Hastelloy G Alloy: thermal stress analysis and characterization, Surface and Interface Analysis 44 (2012) 352-364.
  • [13] M.F. Ashby, K.E. Esterling, The transformation hardening of steel surfaces by laser beams – I. Hypoeutectoid steels, Acta Metallurgica 32/11 (1984) 1935-1948, DOI: 10.1016/0001-6160(84)90175-5.
  • [14] J.C. Ion, K.E. Esterling, M.F. Ashby, A second report on diagrams of microstructure and hardness for heat-affected zones in welds, Acta Metallurgica 32/11 (1984) 1949-1962, DOI: 10.1016/0001-6160(84)90176-7.
  • [15] W.B. Li, K.E. Esterling, M.F. Ashby, The transformation hardening of steel – II. Hypereutectoid steels, Acta Metallurgica 34/8 (1986) 1533-1543.
  • [16] P.W. Lee et al. (eds.): ASM Handbook Volume 7: Powder Metal Technologies and Applications, ASM International, 1998.
  • [17] H.R. Shercliff, M.F. Ashby, The Prediction of Case Depth in Laser Transformation Hardening, Metallurgical Transactions A 22/10 (1991) 2459-2466, DOI: 10.1007/BF02665012.
  • [18] J.M. Pelletier, S. Jobez, Q. Saif, P. Kirat, A.B. Vannes, Laser Surface Alloying: Mechanism of Formation and Improvement of Surface Properties, Journal of Materials Engineering 13/4 (1991) 281-290, DOI: 10.1007/BF02834030.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3981897f-7b47-49bd-bc51-fa254a2bb7c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.