PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized implicit viscosity approximation method for multivalued mappings in CAT(0) spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove strong convergence of the sequence generated by implicit viscosity approximation method involving a multivalued nonexpansive mapping in framework of CAT(0) space. Under certain appropriate conditions on parameters, we show that such a sequence converges strongly to a fixed point of the mapping which solves a variational inequality. We also present some convergence results for the implicit viscosity approximation method in complete R-trees without the endpoint condition.
Wydawca
Rocznik
Strony
347--360
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Department of Mathematics, Government College University, Lahore 54000, Pakistan
  • Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
autor
  • Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, Pakistan
  • Institute of Research and Development of Processes, University of the Basque Country, Campus of Leioa (Bizkaia) - P.O. Box 644 - Bilbao, Barrio Sarriena, 48940 - Leioa, Spain
Bibliografia
  • [1] Moudafi A., Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 2008, 241, 46-55
  • [2] Xu H. K., Alghamdi M. A., Shahzad N., The implicit midpoint rule for nonexpansive mappings in Banach spaces, Fixed Point Theory, 2016, 17(2), 509-517
  • [3] Ke Y., Ma C., The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl.,2015, 2015:190
  • [4] Abkar A., Eslamian M., Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in CAT(0) spaces, Nonlinear Anal., 2012, 75(4), 1895-1903
  • [5] Uddin I., Nieto J. J., Ali J., One-step iteration scheme for multivalued nonexpansive mappings in CAT (0) spaces, Mediterr. J.Math., 2016, 13(3), 1211-1225
  • [6] Uddin I., Ali J., Nieto J. J., An iteration scheme for a family of multivalued mappings in CAT(0) spaces with an application toimage recovery, Rev. R. Acad. Cienc. Exactas Fés. Nat. Ser. A Math. RACSAM, 2018, 112(2), 373-384
  • [7] Wu X. B., Zhao L. N., Viscosity approximation methods for multivalued nonexpansive mappings, Mediterr. J. Math., 2016,13, 2645-2657
  • [8] Preechasilp P., Viscosity approximation methods for implicit midpoint rule of nonexpansive mappings in geodesic spaces, Bull. Malays. Math. Sci. Soc., 2018, 41(3), 1561-1579
  • [9] Panyanak B., Suantai S., Viscosity approximation methods for multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 2015, 2015:114
  • [10] Wangkeeree R., Preechasilp P., Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., 2013, 2013:160
  • [11] Xiong T. J., Lan H. Y., Strong convergence of new two-step viscosity iterative approximation methods for set-valued nonexpansive mappings in CAT(0) spaces, J. Funct. Spaces, 2018, Article ID 1280241
  • [12] Xiong T. J., Lan H. Y., New two-step viscosity approximation methods of fixed points for set-valued nonexpansive mappings associated with contraction mappings in CAT(0) spaces, J. Comput. Anal. Appl., 2019, 26(5), 899-909
  • [13] Burago D. et al., A Course in Metric Geometry, vol. 33, Am. Math. Soc., Providence, 2001
  • [14] Bridson M., Haefliger A., Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999
  • [15] Brown K. S., Buildings, Springer, New York, 1989
  • [16] Dhompongsa S., Kirk W. A., On∆-convergence theorems in CAT(0) spaces, Comput. Math Appl., 2008, 56, 2572-2579
  • [17] Kirk W. A., Geodesic geometry and fixed point theory II, In: International Conference on Fixed Point Theory and Applications,Yokohama Publ., 2004, 113-142
  • [18] Chaoha P., Phon-on A., A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 2006, 320(2), 983-987
  • [19] Berg I.D., Nikolaev I.G., Quasi linearization and curvature of Alexandrov spaces, Geom. Dedic., 2008, 133, 195-218
  • [20] Dehghan H., Rooin J., A characterization of metric projection in CAT(0) spaces, In: Proceedings of International Conferenceon Functional Equation, Geometric Functions and Applications (ICFGA), Tabriz, Iran, 2012, 41-43
  • [21] Xu H. K., An iterative approach to quadratic optimization, J. Optim. Theory Appl., 2003, 116 , 659-678
  • [22] Aksoy A. G., Khamsi M. A., A selection theorem in metric trees, Proc. Am. Math. Soc., 2006, 134, 2957-2966
  • [23] Markin J., Fixed points for generalized nonexpansive mappings in R-trees, Comput. Math. Appl., 2011, 62(12), 4614-4618
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-397f4de4-bdb7-4ce7-b57c-6a8aa3e0be28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.