PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Understanding the Synergic Corrosion Issues with Regard to the Water Treatment Station

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the examples of damage of elements caused by incorrect assessment of pipeline work conditions. The presented damage cases resulted in the need to replace pipelines. This work is an analysis pertaining to the impact of chemical and microbiological synergy of corrosion on stainless steel pipelines. The paper investigates the corrosion mechanisms that may occur under normal operating conditions at each water treatment station, and the methods of counteracting the corrosion were indicated. The analysis of the corrosion mechanisms was formulated taking into account the design stage, – the correctness of the steel grade choice by the designer, the stage of implementation – the most common implementation errors, and the operational stage – optimization of the technological system work and the effects of the introduced changes. The analysis was carried out at a water treatment plant in Poland with a maximum flow of 20,000 m3 a day-1, which draws raw water from deep water intakes and from a surface intake. The treatment technology includes an aeration system (aeration) and a two-stage treatment process using sand and carbon filters. The disinfection process and prophylaxis in the water treatment plant is based on the use of chlorine gas.
Rocznik
Strony
90--96
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Institute of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Brzeznicka 60A, 42-200 Czestochowa, Poland
  • Comprehensive Implementation of Municipal and Industrial Investments – Instal Warszawa S.A. Capital Group Seen Holding Sp. z o.o., ul. Siennicka 29, 04-394 Warszawa
Bibliografia
  • 1. Alfonsson E., Mameng S.H., The Possibilities & Limitations of Austenitic and Duplex Stainless Steels in Chlorinated Water Systems, Outokumpu Avesta Research Center, Nuclear Exchange, May 2012.
  • 2. Avery R.E., S. Lamb, Powell C.A., Tuthill A.H., Stainless Steel for Potable Water Treatment Plants, Nickel Development Institute, NIDI Technical Series No. 10087, 1999.
  • 3. Borenstein S.W., Microbiologically Influenced Corrosion Failure Analysis of 304L Stainless Steel, Australian Wright Metals 2002.
  • 4. Borenstein S.W., Microbiologically Influenced Corrosion Handbook, Woodhead Publishing Ltd., Abington, Cambridge, CGI 6AH, United Kingdom, Industrial Press, Inc. NY 1994.
  • 5. Cantor A.F., Park J.K., Vaiyavatjamai P., The Effect of Chlorine on Corrosion in Drinking Water Systems, Midwest Technology Assistance Center, University of Illinois, the Illinois State Water Survey, Report, 2000.
  • 6. Cutler P., Stainless Steels and Drinking Water Around the World, Nickel Institute 2003.
  • 7. GE Power & Water. Water & Process Technologies, Handbook of Industrial Water Treatment, Chapter 27. Chlorine and Chlorine Alternatives 1997–2012.
  • 8. Hedrich S., Schlomann M., Johnson D.B., The Iron-Oxidizing Proteobacteria, Microbiology, 157, 6, 2011, 1551–1564.
  • 9. Hilbert L.R., Albrechtsen H.J., Andersen A., Effect of Material and Water Quality on Disinfection and Risks of Corrosion, Eurocorr 2010.
  • 10. Hilbert L.R., Carpen L., Moller P., Fontenay F., Mathiesen T., Unexpected Corrosion of Stainless Steel in Low Chloride Waters – Microbial Aspects, Eurocorr 2009.
  • 11. Jack R., Biological Corrosion Failures, ASM Handbook Volume 11: Failure Analysis and Prevention, ASM International 2002.
  • 12. Kobrin G., Microbiologically Influenced Corrosion of Stainless Steels by Water Used for Cooling and Hydrostatic Testing, NIDI Technical Series No 10085, 1998.
  • 13. Little B.J., Lee J.S., Microbiologically Influenced Corrosion, John Wiley & Sons, 2007.
  • 14. Little B.J., Lee J.S., Ray R.I., Microbiologically Influenced Corrosion, Global Phenomena, Local Mechanisms, Naval Research Laboratory Stennis Space Center, USA Report No NRL/ PP/7303–10–0367, 2011.
  • 15. Little B.J., Lee J.S., Ray R.I., Diagnosing Microbiologically Influenced Corrosion: A State-of-theArt Review, Corrosion 62(11), 2006, 1006-1017.
  • 16. Little B.J., Lee J.S., Ray R.I., Microbiologically Influenced Corrosion, Causative Organisms and Mechanisms, Naval Research Laboratory Stennis Space Center, USA , Report No NRL/ PP/7303–11–0671, 2012.
  • 17. Mameng S., Pettersson R., Localised Corrosion of Stainless Steels Depending on Chlorine Dosage in Chlorinated Water, ACOM Outokumpu 3, 2011.
  • 18. Mathiesen T., Frantsen J. E., Unusual Corrosion Failures of Stainless Steel in Low Chloride Waters Corrosion, New Orleans 2008, paper No 08174.
  • 19. Moore M., Chlorines Effect on Corrosion in Drinking Water Systems, Midwest Technology Assistance Center, National Drinking Water Clearinghouse, West Wirginia University, Summer 2001.
  • 20. Moreno D.A., Garcia A.M., Ranninger C., Molina B., Pitting Corrosion in Austenitic Stainless Steel Water Tanks of Hotel Trains, Revista de Metalurgia, 47, 2011, 497-506.
  • 21. Operational Guidelines and Code of Practice for Stainless Steel Products in Drinking Water Supply, British Stainless Steel Association 2002.
  • 22. Suban M., Cvelbar R., Bundara B., The Impact of Stagnant Water on the Corrosion Processes in a Pipeline, Materiali in tehnologije (Materials and technology) 44(6), 2010, 379-383.
  • 23. Suslov T.V., Water Disinfection A Practical Approach to Calculating Dose Values,University of California, Agriculture and Natural Resources, Publication 7256, 2001.
  • 24. Tuthill A.H., Avery R.E., Lamb S., Effect of Chlorine on Common Materials in Fresh Water, Materials Performance 1998, 53-56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-397e4f8b-a81b-4450-80c0-aa72e5501e63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.