Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the Green’s functions which are used in solving the heat conduction problem in a composite cylinder are derived. The functions are obtained by the solution of one dimensional eigenproblems and are presented in the form of eigenfunction series. The temperature in the cylinder as a function of time and space coordinates are expressed by the Green’s functions. A numerical example is presented.
Rocznik
Tom
Strony
105--113
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Lu X., Tervola P., Viljanen M., Transient analytical solution to heat conduction in composite circular cylinder, International Journal of Heat and Mass Transfer 2006, 49, 341-348.
- [2] Nezhad Y.R., Asemi K., Akhlaghi M., Transient solution of temperature field in functionally graded hollow cylinder with finite length using multi-layered approach, International Journal of Mechanics and Materials in Design 2011, 7, 71-82.
- [3] Garbai L., Krope J., Mehes S., Bartal I., Transient heat conduction in composite systems, Proceedings of the 4th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Elounda, Greece, August 21-23, 2006, 372-379.
- [4] Beck J.V., Cole K.D., Haji-Sheikh A., Litkouhi B., Heat Conduction Using Green’s Functions, Hemisphere, Washington, DC 1992.
- [5] Duffy D.G., Green’s functions with applications, Chapman&Hall/CRC, Washington, DC 2001.
- [6] Özişik M.N., Heat condition, second edition, John Wiley & Sons, New York 1993.
- [7] Kukla S., Siedlecka U., Heat conduction in a two-layered hollow cylinder by Green’s function method, Journal of Applied Mathematics and Computational Mechanics 2013, 12(2), 45-50.
- [8] Grzymkowski R., Hetmaniok E., Słota D., Wykłady z modelowania matematycznego, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2002.
- [9] Wolfram S., The Mathematica Book, Wolfram Media, 5th ed., 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-397451b2-deae-4cb9-89d3-8c5fbfac78ea