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Abstract. In this paper, the Green’s functions which are used in solving the heat conduc-

tion problem in a composite cylinder are derived. The functions are obtained by the solution 

of one-dimensional eigenproblems and are presented in the form of eigenfunction series. 

The temperature in the cylinder as a function of time and space coordinates are expressed 

by the Green’s functions. A numerical example is presented. 
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Introduction 

The heat conduction problem in a composite circular cylinder has been consid- 
ered by Lu et al. in paper [1]. The problem has been solved by applying the Laplace 
transform and the closed form solution as the real part of a function is given. Like-
wise, in papers [2, 3], the solution of the heat conduction problem in a cylinder was 
obtained by using the Laplace transform. The inverse transform has been numeri-
cally determined. However, the numerical computations of the inverse transform 
often leads to numerical instabilities and for this reason the seeking of new methods 
is purposeful. The other approach to solving the problem is the use of the proper-
ties of Green’s functions which correspond to the initial boundary problem of heat 
conduction in the layers of the considered composite cylinder. Applications of 
the Green’s functions to various problems of heat conduction are presented in the 
book by Beck et al. [4], in the book by Duffy [5] and in the book by Özişik [6]. 
The Green’s function method to the heat conduction in a composite two-layered 
cylinder has been applied in reference [7]. 

In this paper the Green’s functions applying in the problems of the heat conduc-
tion in finite, composite multi-layered cylinders are derived. The functions are 
obtained by solving the heat conduction differential equation with homogenous 
boundary conditions of the second and third kind. An example of application of 
the Green’s functions to the problem of heat conduction in radial direction of 
a two-layered cylinder is given. The temperature in the cylinder as a time function 
is numerically computed. 



U. Siedlecka, S. Kukla 106

1. Derivation of Green’s functions 

The Green’s functions for the problems of heat conduction satisfy the following 
differential equation 

 ( ) ( ) ( ) ( )2 1 1G
G r z t

t r
δ ρ δ ζ δ τ δ θ ϕ

α

∂
∇ − = − − − −

∂
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where 
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∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂
 is the laplacian in cylindrical coordinates, 

α  is the diffusion coefficient, , ,r zθ  are the space coordinates in cylindrical 

coordinate system and t  is time (Fig. 1). 
 

 
Fig. 1. The sketch of the considered cylindrical region 

We assume the homogeneous boundary conditions in the form: 
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Moreover, the function zero initial condition held 
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We search the solution of the initial - boundary problem (1)-(6) in the form 

 ( ) ( ) ( )
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n

n n
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where 
0

2κ π=  and 
n
κ π=  for 0n > . Substituting (7) into equation (1), we obtain 

differential equation in the form 
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The function ( ), , ; , ,
n

g t r z τ ρ ζ  can be expressed in the form of the product of 

two 1D Green’s functions [4] 
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The function 
n
R  is a solution of a boundary problem: 
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while the function Z  is a solution of the following boundary problem: 
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We seek the function 
n
R  in the form of a series of eigenfunctions ( )nk

rφ  of  the 

homogeneous problem corresponding to the boundary problem (10)-(12). The sought 

functions ( )nk
rφ  satisfy the equation 
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where λ  is the separation constant. Moreover, the functions ( )nk
rφ  satisfy the 

boundary conditions analogous to the given by equations (11)-(12). We assume 
the functions 

nk
φ  in the form 

 ( ) ( ) ( )12 11nk n nk n nk
r A J r A Y rφ λ λ= −  (17) 

where 
nk
λ  are roots of the eigenvalue equation 
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functions satisfy the condition 
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Using the functions 
nk

φ , the solution of the problem (10)-(12) can be written in the 

form 
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Similarly, the solution of the boundary problem (13)-(15) we find in the form 
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The eigenvalues 
k
β  are the roots of equation 
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and the functions 
k

ψ  have the form 

 ( ) 1 2
cos sin

k k k k
z z zψ γ β β γ β= +  (26) 

and 
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Finally, the Green’s function ( ), , , ; , , ,G t r zθ τ ρ ϕ ζ  of the problem (1)-(6) is given 

by equation (7) where the function ( ), , ; , ,
n

g t r z τ ρ ζ  is expressed by equation (9) 

and the functions ( ), ; ,
n

R t r τ ρ , ( ), ; ,Z t z τ ζ  are presented by (24) and (25), 

respectively. 
The Green’s function for axisymmetric heat conduction problem can be obtained 

assuming 0n =  in an equation (8). That way the Green’s function for axisymmetric 
heat conduction problems has the form 
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where 
0 0
, ,

R

k k k
Nφ ψ , and Z

k
N  are given by equations (18), (23), (27) and (28), 

respectively. 

The assumption, that the heat conduction is in the radial direction only, leads to 
the Green’s function in the form 
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where 
12
A  and 

11
A  are given by equations (20) for 0n = . 

2. The Green’s functions for the problem of heat conduction 

in m-layered composite cylinder 

To solve the problem of heat conduction in the composite m-layered cylinder by 
the aid of the GF method, we use the Green’s functions satisfying boundary condi-
tions which can be obtained by suitable adoption of the coefficients, occurring in 
boundary conditions (2)-(5). For example, to observe the heat conduction in the 
radial direction in a two-layered hollow cylinder (m = 2), we assume in boundary 
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conditions (11)-(12) and in equation (30): 
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(a) eigenfunctions: 
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(c) norms of eigenfunctions: 
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(c) norms of eigenfunctions: 
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(c) norms of eigenfunctions: 
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3. Numerical example 

We determine the temperature in the two-layered cylinder by using properties 
of the Green’s functions which are derived in the previous section. The temperatures 

1
T  and 

2
T  in the cylinder layers, submitted in the paper [7], are given in the form 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 0 1 1 0

0

, , ; , , ; ,

t

T t r k r y G t r r r T G t r r dτ τ γ τ τ τ
+

=  +  ∫  for [ ]0 1
,r r r∈  (39) 

( ) ( ) ( ) ( ) ( ) [ ]1

2 2 2 2 2 2 1 2 1 1 2

20

, , ; , , ; , for ,

t

T t r k r T G t r r r y G t r r d r r r
α

γ τ τ τ τ τ
α

∞

 
= − ∈ 

 
∫  

  (40) 



U. Siedlecka, S. Kukla 112

The function ( )y τ  is a solution of the Volterra integral equation of the first kind [7]: 
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A numerical procedure to solution of the equation (42) is presented in paper [7]. 

The numerical calculations of the temperatures 
1
T  and 
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performed for the following geometrical and physical data: 04.0
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Fig. 2. Variations of the temperature versus time in the inner surroundings of the cylinder 

and at the points: r = r
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The time history of temperatures ( )rtT ,  at 
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 for 6000 ≤≤ t , is presented in Figure 2. The periodical changes of the 
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temperature in the cylinder layers are caused by the change of the temperature 
in the inner surroundings of the cylinder. It can be observed, that temperature 
at the outer boundary of the cylinder for the used diffusion coefficient, changes 
slightly over time. 

Conclusions 

The Green’s functions for problems of the heat conduction in a composite hollow 
cylinder are determined. The functions are presented in the form of eigenfunctions 
series. There are three cases of boundary conditions considered in the radial direc-
tion at the surfaces of the layers and the inner and outer surfaces of the cylinder: 
Robin-Neumann, Neumann-Neumann and Neumann-Robin conditions. The tempera- 
ture in the layers of the cylinder with aid of the Green’s functions in an analytical 
form is expressed. Assuming a periodic change of the temperature in the inner 
surroundings of the cylinder and a constant temperature in the outer surroundings, 
variations of the temperature versus time in the two-layered cylinder is numerically 
determined. Although the numerical computation deals with the two-layered cylin-
der, the presented solution can be used in numerical simulation of the temperature 
in the multi-layered cylinder. 
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