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Abstract. Let Σ = (X,B) be a 6-cycle system of order v, so v ≡ 1, 9 mod 12. A c-colouring
of type s is a map φ : B → C, with C set of colours, such that exactly c colours are used
and for every vertex x all the blocks containing x are coloured exactly with s colours. Let
v−1

2 = qs + r, with q, r ≥ 0. φ is equitable if for every vertex x the set of the v−1
2 blocks

containing x is partitioned in r colour classes of cardinality q + 1 and s− r colour classes of
cardinality q. In this paper we study bicolourings and tricolourings, for which, respectively,
s = 2 and s = 3, distinguishing the cases v = 12k+ 1 and v = 12k+ 9. In particular, we settle
completely the case of s = 2, while for s = 3 we determine upper and lower bounds for c.
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1. INTRODUCTION

Block colourings of 4-cycle systems have been introduced and studied in [3,4, 9, 11].
In this paper we study block colourings of 6-cycle systems, in what follows just
“colourings”.

Let Kv be the complete simple graph on v vertices. The graph having vertices
a1, a2, . . . , ak, with k ≥ 3, and having edges {ak, a1} and {ai, ai+1} for i = 1, . . . , k− 1
is a k-cycle and it will be denoted by (a1, a2, . . . , ak). A n-cycle system of order v,
briefly nCS(v), is a pair Σ = (X,B), where X is the set of vertices and B is a set of
n-cycles, called blocks, that partitions the edges of Kv.

A colouring of a nCS(v) Σ = (X,B) is a mapping φ : B → C, where C is a set
of colours. A c-colouring is a colouring in which exactly c colours are used. The set
of blocks coloured with a colour of C is a colour class. A c-colouring of type s is
a colouring in which, for every vertex x, all the blocks containing x are coloured with
exactly s colours.

Let Σ = (X,B) be an nCS(v), let φ : B → C be a c-colouring of type s and let
v−1

2 = qs+ r with q, r ≥ 0. Note that each vertex of an nCS(v) is contained in exactly
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v−1
2 blocks. φ is equitable if for every vertex x the set of the v−1

2 blocks containing
x is partitioned in r colour classes of cardinality q + 1 and s − r colour classes of
cardinality q. A bicolouring, tricolouring or quadricolouring is an equitable colouring
with s = 2, s = 3 or s = 4.

The colour spectrum of an nCS(v) Σ = (X,B) is the set:

Ω(n)
s (Σ) = {c | there exists an equitable c-colouring of type s of Σ}.

We also consider the set Ω(n)
s (v) =

⋃
Ω(n)
s (Σ), where Σ varies in the set of all

the nCS(v).
We will consider the lower s-chromatic index χ(n)

s (Σ) = min Ω(n)
s (Σ) and the upper

s-chromatic index χ
(n)
s (Σ) = max Ω(n)

s (Σ). If Ω(n)
s (Σ) = ∅, then we say that Σ is

uncolourable.
In the same way we consider χ(n)

s (v) = min Ω(n)
s (v) and χ(n)

s (v) = max Ω(n)
s (v).

Block colourings for s = 2, s = 3 and s = 4 of 4CS have been studied in [3, 9, 11].
The problem arose as a consequence of colourings of Steiner systems studied in
[7, 10,12,18]. For further references on such topics see [2, 5, 14,19].

The case n = 5, which the authors have been studying, appears to be definitely
more complex than those studied previously. In this paper we will consider the case
n = 6. It is known (see [15]) that a 6CS(v) exists if and only if v ≡ 1, 9 mod 12. We
will study block colourings for 6CS in the cases s = 2 and s = 3, distinguishing the
cases v = 12k + 1 and v = 12k + 9.

In what follows, to construct 6-cycle systems we will use sometimes the difference
method. This means that we fix as a vertex set X = Zv and, defined a base-block
B = (a1, a2, a3, a4, a5, a6), its translates will be all the blocks of type

B + i = (a1 + i, a2 + i, a3 + i, a4 + i, a5 + i, a6 + i)

for every i ∈ Z. Then, given x, y ∈ X, x 6= y, the edge {x, y} will belong to one of the
blocks B + i for some i if and only if |x − y| ∈ {|ai − ai+1| : i = 1, . . . , 6}, where
the indices are taken mod 6.

2. BICOLOURINGS FOR v = 12k + 1

In this section we will consider bicolourings in the case v = 12k + 1. We will deal with
the case v = 12k + 9 in the next section. First, we determine a bound for the number
c of colours of bicolourings.
Lemma 2.1. Let Σ = (V,B) be a 6CS(v), where v = 12k + 1, and let φ : B → C be
a c-bicolouring of Σ. Then c ≤ 3.
Proof. Let |C| = c and let γ ∈ C. Any element v ∈ V incident with blocks coloured
with γ must be incident with precisely 3k blocks coloured with γ. This means that there
are at least 6k + 1 vertices incident with blocks coloured with γ. This means that

c(1 + 6k) ≤ 2(1 + 12k),

so that c ≤ 3.
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In the following theorems we determine the sets Ω(6)
2 (12k + 1), but we find two

different results, depending on the parity of k.

Theorem 2.2. If k is odd, then Ω(6)
2 (12k + 1) = ∅.

Proof. Let Σ = (V,B) be a 6CS(v), where v = 12k + 1, and let φ : B → C be
a 2-bicolouring of Σ. Let γ ∈ C and let Bγ the set of blocks of B coloured with γ.
Then it must be:

|Bγ | =
v · 3k

6 .

Since k is odd, we get a contradiction.
Now, let Σ = (V,B) be a 6CS(v), where v = 12k + 1, and let φ : B → C be

a 3-bicolouring of Σ. In this case we proceed as in [9, Lemma 2.1]. We can suppose that
C = {1, 2, 3} and we denote by X the set of vertices incident with blocks of colour 1
and 2, by Y the set of vertices incident with blocks of colour 1 and 3 and by Z the set
of vertices incident with blocks of colour 2 and 3. Let x = |X|, y = |Y | and z = |Z|.

We can note that these sets are pairwise disjoint and that in each block we can
have vertices at most of two types. Moreover, it is easy to see that a block can not
contain an odd number of edges having vertices of different types.

This implies that the products xy, xz, yz are all even and so among x, y and z
at most one is odd. However, since x+ y + z = v, one of them is odd, while the others
are even. Since

|B1| =
3k · (x+ y)

6 ,

|B2| =
3k · (x+ z)

6 ,

|B3| =
3k · (y + z)

6 ,

then we get a contradiction, because k is odd. This shows that there is no 3 /∈
Ω(6)

2 (12k + 1). By Lemma 2.1, we get the statement.

Theorem 2.3. If k is even, then Ω(6)
2 (12k + 1) = {2, 3}.

Proof. Let V = Z12k+1. Consider on Z12k+1 the following base blocks:

Ai = (0, 6k + 1− i, 5k, 9k + i, 11k + 1, 2k + i),

for i ∈ {1, . . . , k}. If k = 2h, assign the colour 1 to the blocks Ai and all their translated
forms, for i ∈ {1, . . . , h} and the colour 2 to the blocks Ai and all their translated
forms, for i ∈ {h + 1, . . . , 2h}. If B is the set of all these blocks, Σ = (Z12k+1,B) is
a 6CS(12k + 1) and the previous assignment determines a 2-bicolouring of Σ.

Now we prove that 3 ∈ Ω(6)
2 (12k + 1). Let k = 2h and consider two disjoint sets A

and B, with |A| = |B| = 12h, and en element ∞ /∈ A∪B. By [15] we can consider two
6CS(12h+1), Σ1 = (A∪{∞},B1) and Σ2 = (B∪{∞},B2). By [17] we can take a 6CS
Σ3 = (KA,B ,B3) on the bipartite graph KA,B . Then Σ = (A∪B ∪ {∞},B1 ∪B2 ∪B3)
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is a 6CS(12k + 1). Assigning the colour i to the blocks of Bi, for i = 1, 2, 3, we get
a 3-bicolouring of the Σ.

This proves that 3 ∈ Ω(6)
2 (12k + 1) and by Lemma 2.1 we get the statement.

3. BICOLOURINGS FOR v = 12k + 9

In this section we study bicolouring for 6CS of order v = 12k + 9. First, we determine
a bound for the number c of colours.
Lemma 3.1. Let Σ = (V,B) be a 6CS(v), where v = 12k + 9, and let φ : B → C be
a c-bicolouring of Σ. Then c ≤ 3.
Proof. Let |C| = c and let γ ∈ C. Any element v ∈ V incident with blocks coloured with
γ must be incident with precisely 3k+ 2 blocks coloured with γ. This means that there
are at least 6k + 5 vertices incident with blocks coloured with γ. This means that

c(5 + 6k) ≤ 2(9 + 12k),

so that c ≤ 3.

As done in the case v = 12k + 1, also in the case v = 12k + 9 we are going to
get two distinct results, based on the parity of k. Indeed, the following result can be
proved as Theorem 2.2.

Theorem 3.2. If k is odd, then Ω(6)
2 (12k + 9) = ∅.

Proof. The proof proceeds as in Theorem 2.2, because, in a bicolouring of a 6CS of
order 12k + 9 on a vertex set V , any element v ∈ V is incident with 3k + 2 blocks
coloured with one colour and 3k + 2 blocks coloured with another one. So, if k is odd,
3k+ 2 is odd too and, proceeding as in Theorem 2.2, we show that 2, 3 6∈ Ω(6)

2 (12k+ 9)
for any k odd. By Lemma 3.1 the statement follows.

Now we are going to deal with the case v = 12k + 9 when k is even. Let us first
prove, using the difference method, the following result.

Theorem 3.3. If k is even, then χ
(6)
2 (12k + 9) = 2 for any k ≥ 0 and Ω(6)

2 (9) = {2}.
Proof. 1) Let v = 12k + 9 and let k = 2h. Consider on Z24h+9 the following base
blocks:

Ai = (0, 12h+ 5− i, 20h+ 9, 18h+ 4 + i, 22h+ 9, 4h+ 4 + i)
for i ∈ {1, . . . , 2h}, in the case h ≥ 1. Consider on Z24h+9 the family A of blocks of all
the translated forms of the blocks Ai, for i ∈ {1, . . . , 2h}. Consider also the following
blocks:

Bj = (3j, 3j + 1, 3j + 4, 3j + 5, 3j + 6, 3j + 2),
Cj = (3j, 3j + 3, 3j + 1, 3j + 5, 3j + 2, 3j + 4)

for j ∈ {0, . . . , 8h + 2}. Then Σ = (Z24h+9,A ∪
⋃
Bj ∪

⋃
Cj) (if h = 0 take A = ∅)

is a 6CS(24h+ 9).
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Let us assign the colour 1 to the blocks Ai and all their translated forms for
i ∈ {1, . . . , h} and all the blocks Bj and the colour 2 to the blocks Ai and all their
translated forms for i ∈ {h + 1, . . . , 2h} and all the blocks Cj . In this way we get
a 2-bicolouring of Σ.

2) Let v = 9, let Σ = (V,B) be a 6CS(9) and let φ : B → C be a 3-bicolouring
of Σ. We can suppose that C = {1, 2, 3} and let us denote by Bi the set of blocks
coloured with i and by Xi the set of vertices incident with these blocks. Any vertex
x ∈ X incident with blocks coloured with the colour i must be incident with precisely
2 blocks coloured with i. So, since |B| = 6, then |Bi| = 2 for any i = 1, 2, 3 and by

|Bi| =
2|Xi|

6

we see that it must be |Xi| = 6 for any i. Let X = {a1, . . . , a9} and suppose that
X1 = {a1, . . . , a6}. We can suppose that the edge {a1, a2} is not incident with the
blocks of B1. This implies that we can suppose that {a1, a2} will be incident with one
of the blocks of B2. So a7, a8, a9 ∈ X2, but |X2| = 6. This means that we can suppose
that a3 ∈ X2, but a3 is adjacent with a1 and a2 in the blocks of B1. So in the blocks
of B2 a3 can be adjacent only with the a7, a8, a9. This is is not possible and so by
Lemma 3.1 we have that Ω(6)

2 (9) = {2}.

Now we need to prove that 3 ∈ Ω2(12k + 9) for k even, k ≥ 2. In order to do this,
we will need some technical lemmas. First, let us recall that the union G1 ∪G2 of two
graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph having V1 ∪ V2 as vertex set and
edges those of E1 ∪ E2.

Definition 3.4. A 1-factorization {F1, . . . , F2n−1} of the complete graph K2n is called
uniform if the graphs Fi ∪ Fj are all isomorphic for i 6= j.

Since Fi∪Fj is a 2-regular graph, it is isomorphic to a disjoint union of even cycles.
If these cycles have length k1, . . . , kr, then we say that the uniform 1-factorization is
of type (k1, . . . , kr).

Lemma 3.5 ([6, 8]). There exists a uniform 1-factorization of K12 of type (6, 6) and
it is unique up to isomorphisms.

The previous lemma, together with the following ones, provides us the decomposi-
tion technique that will be required later.

Lemma 3.6. Let h ≥ 1 and let X and Y be disjont sets such that |X| = 12h and
|Y | = 3. Then:

1. the graph KX,Y ∪KX can be decomposed into 6-cycles;
2. for any r such that 1 ≤ r ≤ 5 there exist pairwise disjoint factors F1,. . . ,F2r

of KX such that the graph KX,Y ∪ (KX − F1 − . . .− F2r) can be decomposed into
6-cycles and for any j = 0, . . . , r − 1 the graph F2j+1 ∪ F2j+2 can be decomposed
into 6-cycles.
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Proof. The first part of the statement is a direct consequence of the existence of
maximum packings of Kn with 6-cycles when n ≡ 3 mod 12 (see [13]). We will prove
the second part of the statement by induction. Let h = 1. By Lemma 3.5, we can
consider a uniform factorization F = {F1, . . . , F11} of KX , with X = {0, 1, . . . , 11}.
Let F11 = {{i, i+ 6} | i = 0, . . . , 5} and let Y = {a, b, c}. Then the following cycles:

(a, i+ 8, b, i, c, i+ 4) for i = 0, 1, 2, 3,
(a, 0, 6, b, 7, 1), (a, 2, 8, c, 9, 3), (b, 4, 10, c, 11, 5)

determine a 6-cycles decomposition of the graph KX,Y ∪ F11. Then Lemma 3.5 easily
leads us to the statement in the case h = 1. Indeed, KX − F11 = F1 ∪ . . . ∪ F10. This
proves the base case h = 1, because the factorization F is uniform.

Now we prove the inductive step. Let h > 1 and let Y = {a, b, c}. Let X =
⋃h
i=1 Xi,

where Xi ∩Xj = ∅ for i 6= j and |Xi| = 12 for any i. Note that

KX = KX1 ∪ . . . ∪KXh
∪

⋃

i<j

KXi,Xj
(3.1)

and also that
KX,Y = KX1,Y ∪ . . . ∪KXh,Y . (3.2)

By induction, for any i and r, with 1 ≤ r ≤ 5, we can find F
(i)
1 ,. . . ,F (i)

2r such
that KXi,Y ∪ (KXi

− F (i)
1 − . . .− F (i)

2r ) can be decomposed into 6-cycles and for any
j = 0, . . . , r − 1 F (i)

2j+1 ∪ F
(i)
2j+2 can be decomposed in 6-cycles.

Let Fj =
⋃h
i=1 F

(i)
j for any j, so that each Fj is a factor of X and F1, . . . , F2r are

pairwise disjoint. So by (3.1) and (3.2) and by the fact that KXi,Xj
can be decomposed

into 6-cycles, for any i 6= j, F1,. . . ,F2r are such that KX,Y ∪ (KX −F1− . . .−F2r) can
be decomposed into 6-cycles. Moreover, obviously for any j = 0, . . . , r−1 F2j+1∪F2j+2
can be decomposed into 6-cycles.

The last technical lemma needed is the following.

Lemma 3.7. Let h ≥ 1 and let X and Y be disjont sets such that |X| = 12h and
|Y | = 3. Then, given a 1-factor F of KX , the graph KX,Y ∪F can be decomposed into
6-cycles.

Proof. In Lemma 3.6 the statement has been proved in the case h = 1. Now let h > 1.
We know that |F | = 6h. So we can decompose F in h disjoint subsets F1,. . . , Fh and
we can call Xi the vertex set of Fi. So X =

⋃h
i=1 Xi, where Xi ∩Xj = ∅ for i 6= j,

|Xi| = 12 and Fi is a factor of Xi.
We can apply the statement to each Xi and Fi, so that KXi,Y ∪ Fi can be

decomposed into 6-cycles. Now note that

KX,Y ∪ F = KX1,Y ∪ . . . ∪KXh,Y ∪ F1 ∪ . . . ∪ Fh.

This clearly proves the statement.
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Now we are ready to prove the following result.

Theorem 3.8. If k is even, k ≥ 2, then Ω(6)
2 (12k + 9) = {2, 3}.

Proof. 1) Let v = 33. Let us consider four pairwise disjoint sets X, Y , Z and T ,
with |X| = 6, |Y | = 12, |Z| = 3, |T | = 12 and X = {x1, . . . , x6}, Y = {y1, . . . , y12},
Z = {z1, z2, z3} and T = {t1, . . . , t12}. We will determine a 3-bicolouring for a 6CS
on X ′ = X ∪ Y ∪ Z ∪ T .

Let us consider the factor F1 = {{x1, x2}, {x3, x4}, {x5, x6}} on KX . By [1, Theo-
rem 1.1], we can decompose the graph KX − F1 into 6-cycles, obtaining the blocks A1
and A2. Similarly, we can consider the factor:

F2 = {{y1, y2}, {y3, y4}, {y5, y6}, {y7, y8}, {y9, y10}, {y11, y12}}

on KY . As before, by [1, Theorem 1.1] we can decompose the graph KY − F2 into
6-cycles, obtaining the blocks B1,. . . ,B10. Moreover, by [17] we can decompose the
complete bipartite graph KX,Y into 6-cycles, obtaining the blocks C1,. . . , C12.

Let us consider, also, the blocks

D1 = (x1, x2, z1, x3, z3, z2), D2 = (x3, x4, z3, x1, z1, z2),
D3 = (x5, x6, z2, x4, z1, z3), D4 = (x2, z3, x6, z1, x5, z2).

These blocks represent a decomposition of the graph KZ ∪F1 ∪KX,Z . We will also
consider the blocks E1,. . . ,E12, that we obtain by decomposing KX,T into 6-cycles
(again by [17]). Moreover, consider the following blocks:

Gi = (z1, ti+4, z3, ti, z2, ti+8)

for i = 1, 2, 3, 4. These blocks represent a decomposition of KZ,T − G, where

G = {{zi, tj} | i = 1, 2, 3, j = 4i− 3, 4i− 2, 4i− 1, 4i}.

By Lemma 3.5, we can find pairwise disjoint factors F3, F4, F5 of KT in such a way
that the graph KT − F3 − F4 − F5 can be decomposed into 6-cycles that we call
H1,. . . ,H8.

Consider the graph KY,Z ∪ F2. By Lemma 3.7, we can decompose this graph into
6-cycles I1,. . . , I7. Similarly, by Lemma 3.7, we can get:

– a decomposition in 6-cycles of the graph KT,{y4,y5,y6} ∪ F3, obtaining the blocks
J1,. . . ,J7,

– a decomposition in 6-cycles of the graph KT,{y7,y8,y9} ∪ F4, obtaining the blocks
K1,. . . ,K7,

– a decomposition in 6-cycles of the graph KT,{y10,y11,y12} ∪ F5, obtaining the blocks
L1,. . . ,L7.
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At last, decompose G ∪KT,{y1,y2,y3} in the following blocks:

M1 = (z1, t2, y2, t4, y1, t1),
M2 = (z1, t4, y3, t2, y1, t3),
M3 = (z2, t6, y1, t8, y2, t5),
M4 = (z2, t8, y3, t6, y2, t7),
M5 = (z3, t10, y1, t12, y3, t9),
M6 = (z3, t12, y2, t10, y3, t11),
M7 = (y1, t5, y3, t1, y2, t9),
M8 = (y1, t7, y3, t3, y2, t11).

Let us call B the set of all these blocks. Then clearly that the system Σ = (X ′,B)
is a 6CS of order 33.

Now let us consider the colouring φ : B → {1, 2, 3} such that:
– the blocks Ai Bi and Ci are coloured with the colour 1,
– the blocks Di, Ei, Gi and Hi are coloured with the colour 2,
– the remaining blocks Ii, Ji, Ki, Li and Mi are coloured with the colour 3.

This is a 3-bicolouring of Σ. Indeed, in the blocks coloured with 1 we have only the
vertices of X and Y and each of them belongs to 8 of these blocks; in the blocks
coloured with 2 we have only the vertices of X, Z and T and each of them belongs to
8 of these blocks; in the blocks coloured with 3 we have only the vertices of Y , Z and
T and each of them belongs to 8 of these blocks. This proves that 3 ∈ Ω(6)

2 (33) and by
Lemma 3.1 we get that Ω(6)

2 (33) = {2, 3}.
2) Let v = 24h+ 9, with h ≥ 2. Let us consider the 6CS Σ = (X ′,B) of order 33

constructed previously with the given 3-bicolouring. Let B1 be the set of blocks coloured
with 1, B2 the set of blocks coloured with 2 and B3 the set of blocks coloured with the
colour 3.

We have X ′ = X ∪ Y ∪ Z ∪ T , where |X| = 6, |Y | = 12, |Z| = 3 and |T | = 12
and X, Y , Z and T are pairwise disjoint. Let us consider two other sets Y ′ and T ′,
disjoint from X ′, such that |Y ′| = |T ′| = 12h− 12 and Y ′ ∩ T ′ = ∅. We will determine
a 3-bicolouring for a 6CS on X ′′ = X ′ ∪ Y ′ ∪ T ′, where |X ′′| = 24h+ 9.

Let I1 be a factor of KY ′ , so that by [1] we can decompose KY ′ − I1 into 6-cycles
Ai for i = 1, . . . , (h − 1)(12h − 14). By [17], we can also decompose KX∪Y,Y ′ into
6-cycles B1,. . . ,B36h−36.

By Lemma 3.6, we can find pairwise disjoint factors I2, I3, I4 and I5 of KT ′

such that KZ,T ′ ∪ (KT ′ − I2 − I3 − I4 − I5) can be decomposed into 6-cycles Ci for
i = 1, . . . , (h− 1)(12h− 11) and I2 ∪ I3 and I4 ∪ I5 can also decomposed into 6-cyles.

By [17], we can also decompose KX∪T,T ′ into 6-cycles D1,. . . ,D36h−36.
By Lemma 3.7, we can decompose KY ′,Z ∪ I1 into 6-cycles E1,. . . , E7h−7. By [17],

we can decompose KY ∪Y ′,T ′ into 6-cycles F1,. . . , F2h(12h−12) and KY ′,T into 6-cycles
G1,. . . ,G24h−24. At last we can decompose I2∪I3 and I4∪I5 into 6-cyclesH1,. . . ,H4h−4.

Let us call B the set of these blocks. Then it is easily seen that the system
Σ = (X ′′,B) is a 6CS of order 24h+ 9.
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Now let us consider the colouring φ : B → {1, 2, 3} such that:
– the blocks of B1 and Ai and Bi are coloured with the colour 1,
– the blocks of B2 and Ci and Di are coloured with the colour 2,
– the remaining blocks of B3 and the remaining blocks Ei, Fi, Gi and Hi are coloured
with the colour 3.

This is a 3-bicolouring of Σ. Indeed, in the blocks coloured with 1 we have only the
vertices of X, Y and Y ′ and each of them belongs to 6h+2 of these blocks; in the blocks
coloured with 2 we have only the vertices of X, Z, T and T ′ and each of them belongs
to 6h+ 2 of these blocks; in the blocks coloured with 3 we have only the vertices of
Y , Y ′, Z, T and T ′ and each of them belongs to 6h+ 2 of these blocks. This proves
that 3 ∈ Ω(6)

2 (24h+ 9) and, by Lemma 3.1, we get that Ω(6)
2 (24h+ 9) = {2, 3} for any

h ≥ 1.

4. LOWER 3-CHROMATIC INDEX

In this section we study tricolourings, so that s = 3, analizing the lower 3-chromatic
index. First, we determine an upper bound for the number of colours required.
Lemma 4.1. Let Σ = (V,B) be a 6CS(v) and let φ : B → C be a c-tricolouring of Σ.
Then:
1. if v = 13, c ≤ 7,
2. if v ≡ 1 mod 12 and v > 13, c ≤ 8,
3. if v ≡ 9 mod 12, c ≤ 9.
Proof. Let v = 12k + 1, for some k ≥ 1 and let |C| = c and let γ ∈ C. Any element
v ∈ V incident with blocks coloured with γ must be incident with precisely 2k blocks
coloured with γ. This means that there are at least 4k + 1 vertices incident with
blocks coloured with γ. This means that

c(1 + 4k) ≤ 3(1 + 12k),

so that c ≤ 8, if k ≥ 2, otherwise we get c ≤ 7 if k = 1.
Let v = 12k + 9, for some k ≥ 0 and let |C| = c e let γ ∈ C. Any element v ∈ V

incident with blocks coloured with γ must be incident with either 2k + 2 or 2k + 1
blocks coloured with γ. This means that there are at least 4k + 3 vertices incident
with blocks coloured with γ. This means that

c(3 + 4k) ≤ 3(9 + 12k),

so that c ≤ 9.

Since v ≡ 1, 9 mod 12, we are going to distinguish the two cases, being this time
the case v ≡ 1 mod 12 more difficult to deal with. Indeed, we will determine the exact
value of χ(6)

3 (12k+ 1) only for k = 1, k = 2 and k ≡ 0 mod 3, while we will determine
the exact value of χ(6)

3 (12k + 9) for any k ≥ 0.
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Theorem 4.2. If k ≡ 1, 2 mod 3, χ
(6)
3 (12k + 1) ≥ 4. If k ≡ 0 mod 3,

χ
(6)
3 (12k + 1) = 3.

Proof. Let Σ = (V,B) be a 6CS(v) and let φ : B → C be a 3-tricolouring of Σ. Any
element v ∈ V incident with blocks coloured with γ must be incident with precisely
2k blocks coloured with γ. So, if Bγ is the set of blocks coloured with γ, it must be

|Bγ | =
2kv
6 = kv

3 .

However, if k ≡ 1, 2 mod 3, this number is not an integer. This shows that, if
k ≡ 1, 2 mod 3, χ(6)

3 (12k + 1) ≥ 4.
Now, let v = 36h + 1, for some h ≥ 1. Let us consider three sets A, B, C such

that |A| = |B| = |C| = 12h and A ∩B = A ∩ C = B ∩ C = ∅ and let us consider also
an element ∞ /∈ A ∪B ∪ C.

By [15], we can decompose the complete graphs KA∪{∞}, KB∪{∞} and KC∪{∞}
into 6-cycles, that we call, respectively, Di, Ei and Fi for i = 1,. . . ,12h2 +h. Moreover,
by [17] we can decompose the complete bipartite graphs KA,B , KA,C and KB,C into
6-cycles that we call, respectively, Gi, Hi and Ii for i = 1, . . . , 24h2. Called B the set
of all these blocks, it is easy to see that the system Σ = (A ∪ B ∪ C ∪ {∞},B) is
a 6CS of order 36h+ 1.

Consider, now, the colouring φ : B → {1, 2, 3} obtained by assigning the colour 1
to the blocks Di and Ii, the colour 2 to the blocks Ei and Hi and the colour 3 to
the blocks Fi and Gi. Then it is easy to see that this is a 3-tricolouring of Σ.

In the following result we see that the lower 3-chromatic index in the cases v = 13
and v = 25 is 4. It is reasonable to conjecture that, in general, if k ≡ 1, 2 mod 3, then
χ

(6)
3 (12k + 1) = 4.

Theorem 4.3. χ(6)
3 (13) = 4 and χ(6)

3 (25) = 4.
Proof. 1) Let v = 13. Let us consider three sets A = {a1, a2, a3, a4}, B = {b1, b2, b3, b4},
C = {c1, c2, c3, c4}, pairwise disjoint, and an element ∞ /∈ A ∪ B ∪ C. On X =
A ∪B ∪ C ∪ {∞} let us consider the following blocks:

D1 =(∞, a1, b2, a3, b3, a2), D2 =(b1, b2, b4, a4,∞, a3), D3 =(b3, b4, a1, a2, b1, a4),
D4 =(∞, c1, a1, a3, a2, c2), D5 =(c1, c3, c2, a4, a3, c4), D6 =(c3,∞, c4, a2, a4, a1),
D7 =(∞, b1, c2, b2, c3, b3), D8 =(c1, c2, c4, b4,∞, b2), D9 =(c3, c4, b1, b3, c1, b4),
D10 =(a1, b3, b2, a2, b4, c2), D11 =(a1, b1, c3, a4, b2, c4), D12 =(a2, c1, b1, b4, a3, c3),
D13 =(a3, c1, a4, c4, b3, c2).

Then Σ = (X,
⋃13
i=1 Di) is 6CS of order 13. Let us consider, now, the colouring

φ :
⋃13
i=1 Di → {1, 2, 3, 4} obtained in the following way:

– assign the colour 1 to the blocks D1, D2 and D3,
– assign the colour 2 to the blocks D4, D5 and D6,
– assign the colour 3 to the blocks D7, D8 and D9,
– assign the colour 4 to the remaning blocks D10, D11, D12 and D13.
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Then φ is a 4-tricolouring of Σ, so that 4 ∈ Ω(6)
3 (13). By Theorem 4.2, we get that

χ
(6)
3 (13) = 4.
2) Let v = 25. Let X = Z4 × {1, 2, 3, 4, 5, 6} ∪ {∞}, with ∞ /∈ Z4 × {1, 2, 3, 4, 5, 6}.

Let us consider on X the following blocks:

A1 =(05, 15, 14, 35, 25, 04), A2 =(05, 25, 34, 15, 35, 24), A3 =(05, 35, 04, 15, 25, 14),
A4 =(06, 16, 13, 36, 26, 03), A5 =(06, 26, 33, 16, 36, 23), A6 =(06, 36, 03, 16, 26, 13),
A7 =(∞, 05, 34, 02, 33, 06), A8 =(∞, 15, 24, 02, 23, 16), A9 =(∞, 25, 24, 22, 23, 26),
A10 =(∞, 35, 34, 22, 33, 36), A11 =(02, 04, 32, 24, 12, 14), A12 =(02, 03, 32, 23, 12, 13),
A13 =(22, 04, 12, 34, 32, 14), A14 =(22, 03, 12, 33, 32, 13),

which represent a decomposition in 6-cycles of the graph:

K{05,15,25,35} ∪K{06,16,26,36} ∪K{02,12,22,32}∪{05,15,25,35},{04,14,24,34}
∪K{02,12,22,32}∪{06,16,26,36},{03,13,23,33} ∪K{∞},{05,15,25,35}∪{06,16,26,36}.

Also, by [15], we can decompose:
– the complete graph on {01, 11, 21, 31}∪{02, 12, 22, 32}∪{∞} into 6-cycles B1,. . . ,B6,
– the complete graph on {03, 13, 23, 33}∪{04, 14, 24, 34}∪{∞} into 6-cycles C1,. . . ,C6.
By [16, Theorem 2.2], given K{01,11,21,31},{05,15,25,35},{06,16,26,36}, we can decompose
this equipartite graph into 6-cycles D1,. . . ,D8. Moreover, let us consider the blocks
Eij = (i1, j3, i5, j2, i6, j4) for any i, j ∈ {0, 1, 2, 3}. Let B the set of all these blocks. Then
Σ = (X,B) is a 6CS of order 25.

Consider, now, the colouring φ : B → {1, 2, 3, 4} obtained in the following way:
– assign the colour 1 to the blocks Ai,
– assign the colour 2 to the blocks Bi,
– assign the colour 3 to the blocks Ci and Di,
– assign the colour 4 to the blocks Eij .

Then φ is a 4-tricolouring of Σ, so that 4 ∈ Ω(6)
3 (25) and by Theorem 4.2 we get that

χ
(6)
3 (25) = 4.

In the following theorem we will see that 3 ∈ Ω(6)
3 (12k + 9) for any k ≥ 0, using

the difference method technique.

Theorem 4.4. For any k ≥ 0, χ(6)
3 (12k + 9) = 3.

Proof. 1) Let k = 0. Let us consider the following 6-cycles on X = Z9:

A1 = (1, 2, 3, 4, 5, 7), A2 = (1, 3, 0, 6, 2, 8), A3 = (1, 6, 3, 5, 2, 4),
A4 = (6, 7, 4, 8, 0, 5), A5 = (1, 5, 8, 7, 2, 0), A6 = (3, 7, 0, 4, 6, 8).

Given B =
⋃6
i=1 Ai, the system Σ = (X,B) is a 6CS on X. Consider, now, the

colouring φ : B → {1, 2, 3} obtained by assigning the colour 1 to the blocks A1 and
A2, the colour 2 to the blocks A3 and A4 and the colour 3 to the blocks A5 and A6.
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Then it is easy to see that this is a 3-tricolouring of Σ.
2) Let k ≥ 1 and let v = 12k+9. Consider X = Z4k+3×{1, 2, 3}. We will construct

a 6CS Σ on X and a 3-tricolouring of Σ. Consider the following blocks on X:
– Aj = (01, j1, 03, (4k + 3− j)3, 02, (4k + 3− j)2) for j ∈ {1, . . . , k},
– Bj = (01, j1, (2k+1)3, (j+2k+1)3, (3k+2)2, (j+3k+2)2) for j ∈ {k+1, . . . , 2k+1},
– Cj = (01, j2, 03, j1, 02, j3) for j ∈ {k + 1, . . . , 2k + 1}.

By using the difference method on X it is easy to see that, if B is the collection of all
these blocks and their translates, the system Σ = (X,B) is a 6CS on X.

Suppose now that k = 1. Consider the colouring φ : B → {1, 2, 3} on Σ obtained in
the following way:
1. assign the colour 1 to the block A1 and all its translates and to the blocks C2 + i

for i ∈ {0, . . . , 4},
2. assign the colour 2 to the blocks B2 and all its translates and to the blocks C3 + i

for i ∈ {0, 1, 5, 6},
3. assign the colour 3 to the block B3 and all its translates, to the blocks C2 + i for
i = 5, 6 and to the blocks C3 + i for i = 2, 3, 4.

This is a 3-tricolouring of Σ. Any element in X belongs to 10 blocks of Σ and
in a 3-tricolouring of Σ these blocks must be divided into three sets of cardinality 4, 3
and 3, each a subset of a colour class. With the assigned colouring we see that:
– the elements 2i, 3i, 4i, for i = 1, 2, 3, belong to 4 blocks coloured with 1, while

the remaining ones belong to 3 blocks coloured with 1,
– the elements 1i, for i = 1, 2, 3, belong to 4 blocks coloured with 2, while

the remaining ones belong to 3 blocks coloured with 2,
– the elements 0i, 5i, 6i, for i = 1, 2, 3, belong to 4 blocks coloured with 3, while

the remaining ones belong to 3 blocks coloured with 3.
Suppose now that k ≥ 2 and consider the colouring φ : B → {1, 2, 3} obtained

in the following way:
1. assign the colour 1 to the blocks Aj , for j ∈ {1, . . . , k}, and all their translates and

to the blocks C2k + i for i ∈ {0, . . . , 3k + 1},
2. assign the colour 2 to the blocks Bj , for j ∈ {k+ 1, . . . , 2k}, and all their translates

and to the blocks C2k+1 + i for i ∈ {0, . . . , 2k − 1} ∪ {3k + 2, . . . , 4k + 2},
3. assign the colour 3 to the block B2k+1 and all its translates, to the blocks Cj ,

for j ∈ {k + 1, . . . , 2k − 1}, and all their translates, to the blocks C2k + i for
i ∈ {3k + 2, . . . , 4k + 2} and to the blocks C2k+1 + i for i ∈ {2k, . . . , 3k + 1}.

This is a 3-tricolouring of Σ. Any elements in X belongs to 6k + 4 blocks of Σ and in
a 3-tricolouring of Σ these blocks must be divided into three sets of cardinality 2k + 2,
2k + 1 and 2k + 1, each a subset of a colour class. With the assigned colouring we see
that:
– the elements {0i, . . . , (k − 2)i} ∪ {(2k)i, . . . , (3k + 1)i}, for i = 1, 2, 3, belong to

2k+ 2 blocks coloured with 1, while the remaining elements belong to 2k+ 1 blocks
coloured with 1,
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– the elements {ki, . . . , (2k − 1)i}, for i = 1, 2, 3, and {(3k + 2)i, . . . , (4k)i} for
i = 1, 2, 3, belong to 2k + 2 blocks coloured with 2, while the remaining elements
belong to 2k + 1 blocks coloured with 2,

– the elements (k − 1)i, (4k + 1)i, (4k + 2)i, for i = 1, 2, 3, belong to 2k + 2 blocks
coloured with 3, while the remaining elements belong to 2k + 1 blocks coloured
with 3.

This shows that φ is a 3-tricolouring of Σ.

5. UPPER 3-CHROMATIC INDEX

In this last section we study the upper 3-chromatic index, finding, in general, an upper
bound and in just some cases its exact value. Again, we will study separately the cases
v = 12k + 1 and v = 12k + 9.

Theorem 5.1. χ(6)
3 (12k + 1) = 7 for k ≡ 0, 2 mod 3 and χ

(6)
3 (12k + 1) ≤ 7 for

k ≡ 1 mod 3.

Proof. By Lemma 4.1, we know that χ(6)
3 (12k + 1) ≤ 8 for k ≥ 2, while χ(6)

3 (13) ≤ 7.
So we can suppose that k ≥ 2. Suppose that there exists an 8-tricolouring of a 6CS
Σ = (X,B) of order 12k + 1. Let Bi be the family of blocks coloured with the colour i
and let Xi be the set of vertices incident with the blocks of Bi. Then any x ∈ Xi belongs
to 2k blocks of Bi, so that |Xi| ≥ 4k + 1 for any i. So we have that |Xi| = 4k + 1 + ki
for any i. However, we know that

8∑

i=1
|Xi| = 3(12k + 1)⇒

8∑

i=1
ki = 4k − 5.

Note now that, if x, y ∈ Xi ∩ Xj , with x 6= y and i 6= j, then the edge {x, y} may
belong to just one block either in Bi or in Bj . So y is either one of the elements
of Xi not adjacent to x in the blocks of Bi (of which there are at most ki) or one of the
elements of Xj not adjacent to x in the blocks of Bj (of which there are at most kj).
This means that

|Xi ∩Xj | ≤ ki + kj + 1.

So we have

2|Xi| =
∑

j∈{1,...,8}\{i}
|Xi ∩Xj | ⇒ 2(4k + 1 + ki) ≤

∑

j∈{1,...,8}\{i}
(ki + kj + 1)

⇒ 8k + 2 + 2ki ≤ 6ki + 4k + 2⇒ ki ≥ k.

Since
∑8
i=1 ki = 4k− 3, we get 4k− 3 ≥ 8k, so that 4k ≤ −3, which is a contradiction.

So χ(6)
3 (12k + 1) ≤ 7 for any k ≥ 1.

Now, let k ≡ 0, 2 mod 3 and let v = 12k + 1. Let us consider A1,. . . , A6 pairwise
disjoint sets such that |Ai| = 2k for any i and take an element ∞ /∈ Ai for any i. Let
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X =
⋃6
i=1 Ai∪{∞}. By [15], we can decompose the complete graph KA2i+1∪A2i+2∪{∞}

for i = 0, 1, 2 into 6-cycles determining the system Σi = (A2i+1 ∪ A2i+2 ∪ {∞},Bi)
for i = 0, 1, 2. By [16], we can decompose the complete equipartite graphs KA1,A3,A5 ,
KA1,A4,A6 ,KA2,A3,A6 andKA2,A4,A5 into 6-cycles, determining, respectively, the family
of blocks C1, C2, C3 and C4.

It is easy to see that Σ = (X,
⋃3
i=1 Bi ∪

⋃4
i=1 Ci) is a 6CS of order v. Let

φ :
⋃3
i=1 Bi ∪

⋃4
i=1 Ci → {1, . . . , 7} be a colouring which assigns the colour i to the

blocks of Bi, for i = 1, 2, 3 and the colour j to the blocks of Cj−3 for j = 4, 5, 6, 7. It
is easy to see that φ is a 7-tricolouring of Σ and this proves that χ(6)

3 (12k + 1) = 7 for
k ≡ 0, 2 mod 3.

It is possible to determine the spectrum of tricolourings for 6CS of order 13.

Theorem 5.2. Ω(6)
3 (13) = {4, 5}.

Proof. Let Σ = (X,B) be a 6CS(13). We need to show that, given a tricolouring
φ : B → {1, . . . , c}, then c ≤ 5. By Lemma 4.1, we know that c ≤ 7. Let Bi the set of
blocks coloured with i and Xi the set of vertices incident with the blocks of Bi.

Let c = 7. It must be |Bi| ≥ 2 for any i, while however

13 = |B| =
7∑

i=1
|Bi|.

This is not possible and so c ≤ 6.
Let c = 6. Since |Bi| ≥ 2 for any i and 13 = |B| =

∑6
i=1 |Bi|, then we can say

that |Bi| = 2 for i = 1, . . . , 5 and |B6| = 3. Note that |Bi| = 2|Xi|
6 and so |Xi| = 6

for i = 1, . . . , 5 and |X6| = 9. Since, for any i = 1, . . . , 5, any x ∈ Xi is incident to
both blocks of Bi, we see that for any x ∈ Xi there exists just one y ∈ Xi such that
the edge {x, y} does not belong to the blocks of Bi. This implies that |Xi ∩Xj | ≤ 2
for any i, j = 1, . . . , 5, i 6= j. However,

39 = 3|X| =
∑

1≤i<j≤6
|Xi ∩Xj | ⇒ 2|X6| =

5∑

i=1
|Xi ∩X6| ≥ 19.

Since |X6| = 9, we have a contradiction, and so c ≤ 5.
Now, by Theorem 4.3, to get the statement we need to show that there exists

a 5-tricolouring of a 6CS of order 13. On Z13 consider the following blocks:
– A1 and A2, obtained by decomposing K{0,1,2,3,4,5} − {{0, 1}, {2, 3}, {4, 5}} (see

[1, Theorem 1.1]) in 6-cycles,
– A3 and A4, obtained by decomposing K{0,1,6,7,8,9} − {{0, 6}, {1, 7}, {8, 9}} in

6-cycles,
– A5 and A6, obtained by decomposing K{0,2,6,10,11,12} − {{0, 2}, {6, 10}, {11, 12}}

in 6-cycles,
– A7 = (3, 8, 4, 7, 5, 9), A8 = (3, 11, 4, 10, 5, 12), A9 = (7, 11, 8, 10, 9, 12), A10 =

(1, 7, 3, 6, 5, 11), A11 = (1, 10, 3, 2, 8, 12), A12 = (2, 7, 10, 6, 4, 9) and A13 =
(4, 5, 8, 9, 11, 12).
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It is easy to see that the system Σ = (Z13,
⋃13
i=1 Ai) is a 6CS(13). Let us consider now

a colouring φ :
⋃13
i=1 Ai → {1, . . . , 5} defined in the following way:

– assign the colour 1 to the blocks A1, A2,
– assign the colour 2 to the blocks A3, A4,
– assign the colour 3 to the blocks A5, A6,
– assign the colour 4 to the blocks A7, A8, A9,
– assign the colour 5 to the blocks A10, A11, A12, A13.
It is easy to see that this is a 5-tricolouring of Σ.

Now we determine an upper bound for χ(6)
3 (12k + 9).

Theorem 5.3. χ(6)
3 (12k + 9) ≤ 7 for k ≥ 1.

Proof. By Lemma 4.1, we know that χ(6)
3 (12k + 9) ≤ 9.

Suppose that there exists a 9-tricolouring of a 6CS Σ = (X,B) of order 12k + 9.
Let Bi be the family of blocks coloured with the colour i and let Xi be the set of
vertices incident with the blocks of Bi. Then any x ∈ Xi belongs to either 2k + 1 or
2k+ 2 blocks of Bi, so that |Xi| ≥ 4k+ 3 for any i. So we have that |Xi| = 4k+ 3 + ki
for any i, with ki ≥ 0. However we know that

9∑

i=1
|Xi| = 3(12k + 9)⇒

9∑

i=1
ki = 0.

So ki = 0 for any i. However, this is not possible, because in such a way no element
of X belongs to 2k + 2 blocks of Bi for some i. So we have a contradiction and
χ

(6)
3 (12k + 9) ≤ 8.
As before, suppose that there exists an 8-tricolouring of a 6CS Σ = (X,B) of order

12k+ 9. Let Bi be the family of blocks coloured with the colour i and let Xi be the set
of vertices incident with the blocks of Bi. Then any x ∈ Xi belongs to either 2k + 1 or
2k+ 2 blocks of Bi, so that |Xi| ≥ 4k+ 3 for any i. So we have that |Xi| = 4k+ 3 + ki
for any i, with ki ≥ 0. However,

8∑

i=1
|Xi| = 3(12k + 9)⇒

8∑

i=1
ki = 4k + 3.

Note now that, if x, y ∈ Xi∩Xj , with x 6= y and i 6= j, then the edge {x, y} may belong
to just one block either in Bi or in Bj . So y is either one of the elements of Xi not
adjacent to x in the blocks of Bi (of which there are at most ki) or one of the elements
of Xj not adjacent to x in the blocks of Bj (of which there are at most kj). This means
that

|Xi ∩Xj | ≤ ki + kj + 1.
So we have

2|Xi| =
∑

j∈{1,...,8}\{i}
|Xi ∩Xj | ⇒ 2(4k + 3 + ki) ≤

∑

j∈{1,...,8}\{i}
(ki + kj + 1)

⇒ 8k + 6 + 2ki ≤ 6ki + 4k + 10⇒ ki ≥ k − 1.
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Since
∑8
i=1 ki = 4k + 3, we get 4k + 3 ≥ 8k − 8, so that 4k ≤ 11. This means that

the only possibilities are k = 2 and k = 1.
Let k = 2, so that v = 33 and any vertex x ∈ Xi belongs to either 6 or 5 blocks of

Bi. Since ki ≥ k − 1, we have that ki ≥ 1 for any i. Moreover,
∑8
i=1 ki = 4k + 3 = 11.

So we can suppose that ki = 1 and |Xi| = 12 for any i = 1, . . . , 5. This means that any
element in Xi, for i = 1, . . . , 5, belongs to exactly 5 blocks of Bi and that for any x ∈ Xi

there exists just one y ∈ Xi such that {x, y} is not incident with some block of Bi. In
particular, we get that Xi ∩Xj ∩Xk = ∅ for any pairwise distinct i, j, k = 1, . . . , 5.
Let us recall also that |Xi ∩Xj | ≤ ki + kj + 1 = 3 for any i, j =, 1, . . . , 5. Since

33 ≥ |X1 ∪ . . . ∪X5| =
5∑

i=1
|Xi| −

∑

1≤i<j≤5
|Xi ∩Xj | ⇒

∑

1≤i<j≤5
|Xi ∩Xj | ≥ 27,

we see that there exists i, j = 1, . . . , 5, with i 6= j, such that |Xi ∩ Xj | = 3. Let
Xi ∩ Xj = {x, y, z}. By what remarked previously, we can suppose that {x, y} is
incident with some block in Bi and similarly either {x, z} or {y, z} to some block
in Bi. In both cases we get a contradiction and so we see that k = 2 is impossible.

So let k = 1. In this case, |Xi| = 7 + ki for any i and
∑8
i=1 ki = 7. So we can say

that k1 = 0 and |X1| = 7. Since in this case v = 21 and any x ∈ Xi belongs to either 4
or 3 blocks of Bi, we can say that the blocks of B1 are a decomposition of the complete
graph on X1. By [15], this is impossible because 7 6≡ 1, 9 mod 12.

At last we determine the spectrum of Ω(6)
3 (9).

Theorem 5.4. Ω(6)
3 (9) = {3, 4}.

Proof. By Lemma 4.1, we know that χ(6)
3 (9) ≤ 9. Let Σ = (X,B) be a 6CS and let

φ : B → {1, 2, . . . , c} be c-tricolouring of Σ. Since |B| = 6, it follows that c ≤ 6.
Since φ is a tricolouring, we see that any vertex belongs to 4 blocks, 2 of them

coloured with the same colour and the other two with other two different colours.
So, if c = 6, then any two blocks are coloured with different colours, which is clearly
impossible in a tricolouring. If c = 5, then only 2 of 6 blocks are coloured with
the same colour. So at most only 6 of the 9 vertices belongs to two blocks coloured
with same colour. So c ≤ 4.

Now we will prove that χ(6)
3 (9) = 4. On X = Z9 consider the following blocks:

Bj = (3j, 3j + 1, 3j + 4, 3j + 5, 3j + 6, 3j + 2),
Cj = (3j, 3j + 3, 3j + 1, 3j + 5, 3j + 2, 3j + 4)

for j = 0, 1, 2. Then Σ = (X,
⋃2
j=0 Bj ∪ Cj) is a 6CS on X. Consider the following

colouring φ :
⋃2
j=0 Bj ∪ Cj → {1, 2, 3, 4}:

– assign the colour 1 to the blocks Bj for j = 0, 1, 2,
– assign the colour j, for j = 2, 3, 4, to the block Cj−2.

Then it is easy to see that φ is a 4-tricolouring of Σ, so that χ(6)
3 (9) = 4. By Theorem 4.4,

we get that Ω(6)
3 (9) = {3, 4}.
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