BLOCK COLOURINGS OF 6**-CYCLE SYSTEMS**

Paola Bonacini, Mario Gionfriddo, and Lucia Marino

Communicated by Mariusz Meszka

Abstract. Let $\Sigma = (X, \mathcal{B})$ be a 6-cycle system of order *v*, so $v \equiv 1, 9 \mod 12$. A *c*-colouring of type *s* is a map $\phi: \mathcal{B} \to \mathcal{C}$, with *C* set of colours, such that exactly *c* colours are used and for every vertex *x* all the blocks containing *x* are coloured exactly with *s* colours. Let $\frac{v-1}{2} = qs + r$, with $q, r \geq 0$. ϕ is *equitable* if for every vertex *x* the set of the $\frac{v-1}{2}$ blocks containing *x* is partitioned in *r* colour classes of cardinality $q + 1$ and $s - r$ colour classes of cardinality *q*. In this paper we study bicolourings and tricolourings, for which, respectively, $s = 2$ and $s = 3$, distinguishing the cases $v = 12k + 1$ and $v = 12k + 9$. In particular, we settle completely the case of $s = 2$, while for $s = 3$ we determine upper and lower bounds for *c*.

Keywords: 6-cycles, block-colourings, *G*-decompositions.

Mathematics Subject Classification: 05C15, 05B05.

1. INTRODUCTION

Block colourings of 4-cycle systems have been introduced and studied in [3, 4, 9, 11]. In this paper we study block colourings of 6-cycle systems, in what follows just "colourings".

Let K_v be the complete simple graph on v vertices. The graph having vertices a_1, a_2, \ldots, a_k , with $k \ge 3$, and having edges $\{a_k, a_1\}$ and $\{a_i, a_{i+1}\}$ for $i = 1, \ldots, k - 1$ is a *k*-cycle and it will be denoted by (a_1, a_2, \ldots, a_k) . A *n*-cycle system of order *v*, briefly $nCS(v)$, is a pair $\Sigma = (X,\mathcal{B})$, where X is the set of vertices and B is a set of *n*-cycles, called *blocks*, that partitions the edges of *Kv*.

A colouring of a $nCS(v) \Sigma = (X,\mathcal{B})$ is a mapping $\phi: \mathcal{B} \to \mathcal{C}$, where C is a set of colours. A *c*-colouring is a colouring in which exactly *c* colours are used. The set of blocks coloured with a colour of C is a *colour class*. A *c*-colouring of type *s* is a colouring in which, for every vertex *x*, all the blocks containing *x* are coloured with exactly *s* colours.

Let $\Sigma = (X, \mathcal{B})$ be an $nCS(v)$, let $\phi: \mathcal{B} \to \mathcal{C}$ be a *c*-colouring of type *s* and let $\frac{v-1}{2} = qs + r$ with $q, r \ge 0$. Note that each vertex of an $nCS(v)$ is contained in exactly

^c Wydawnictwa AGH, Krakow 2017 647

 $\frac{v-1}{2}$ blocks. ϕ is *equitable* if for every vertex *x* the set of the $\frac{v-1}{2}$ blocks containing *x* is partitioned in *r* colour classes of cardinality $q + 1$ and $s - r$ colour classes of cardinality *q*. A bicolouring, tricolouring or quadricolouring is an equitable colouring with $s = 2$, $s = 3$ or $s = 4$.

The colour spectrum of an $nCS(v) \Sigma = (X,\mathcal{B})$ is the set:

 $\Omega_s^{(n)}(\Sigma) = \{c \mid \text{there exists an equitable } c\text{-colouring of type } s \text{ of } \Sigma\}.$

We also consider the set $\Omega_s^{(n)}(v) = \bigcup \Omega_s^{(n)}(\Sigma)$, where Σ varies in the set of all the $nCS(v)$.

We will consider the *lower s*-chromatic index $\chi_s^{(n)}(\Sigma) = \min \Omega_s^{(n)}(\Sigma)$ and the *upper s*-*chromatic index* $\overline{\chi}_s^{(n)}(\Sigma) = \max \Omega_s^{(n)}(\Sigma)$. If $\Omega_s^{(n)}(\Sigma) = \emptyset$, then we say that Σ is uncolourable.

In the same way we consider $\chi_s^{(n)}(v) = \min \Omega_s^{(n)}(v)$ and $\overline{\chi}_s^{(n)}(v) = \max \Omega_s^{(n)}(v)$.

Block colourings for $s = 2$, $s = 3$ and $s = 4$ of $4CS$ have been studied in [3, 9, 11]. The problem arose as a consequence of colourings of Steiner systems studied in [7, 10, 12, 18]. For further references on such topics see [2, 5, 14, 19].

The case $n = 5$, which the authors have been studying, appears to be definitely more complex than those studied previously. In this paper we will consider the case $n = 6$. It is known (see [15]) that a $6CS(v)$ exists if and only if $v \equiv 1,9 \mod 12$. We will study block colourings for $6CS$ in the cases $s = 2$ and $s = 3$, distinguishing the cases $v = 12k + 1$ and $v = 12k + 9$.

In what follows, to construct 6-cycle systems we will use sometimes the difference method. This means that we fix as a vertex set $X = \mathbb{Z}_v$ and, defined a base-block $B = (a_1, a_2, a_3, a_4, a_5, a_6)$, its translates will be all the blocks of type

$$
B + i = (a_1 + i, a_2 + i, a_3 + i, a_4 + i, a_5 + i, a_6 + i)
$$

for every $i \in \mathbb{Z}$. Then, given $x, y \in X$, $x \neq y$, the edge $\{x, y\}$ will belong to one of the blocks $B + i$ for some *i* if and only if $|x - y| \in \{ |a_i - a_{i+1}| : i = 1, \ldots, 6 \}$, where the indices are taken mod 6.

2. BICOLOURINGS FOR $v = 12k + 1$

In this section we will consider bicolourings in the case $v = 12k + 1$. We will deal with the case $v = 12k + 9$ in the next section. First, we determine a bound for the number *c* of colours of bicolourings.

Lemma 2.1. *Let* $\Sigma = (V, \mathcal{B})$ *be a* $6CS(v)$ *, where* $v = 12k + 1$ *, and let* $\phi: \mathcal{B} \to C$ *be a c*-bicolouring of Σ *. Then* $c \leq 3$ *.*

Proof. Let $|C| = c$ and let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with γ must be incident with precisely 3k blocks coloured with γ . This means that there are at least $6k + 1$ vertices incident with blocks coloured with γ . This means that

$$
c(1+6k) \le 2(1+12k),
$$

so that $c \leq 3$.

In the following theorems we determine the sets $\Omega_2^{(6)}(12k+1)$, but we find two different results, depending on the parity of *k*.

Theorem 2.2. *If k is odd, then* $\Omega_2^{(6)}(12k+1) = \emptyset$ *.*

Proof. Let $\Sigma = (V, \mathcal{B})$ be a $6CS(v)$, where $v = 12k + 1$, and let $\phi \colon \mathcal{B} \to C$ be a 2-bicolouring of Σ . Let $\gamma \in C$ and let \mathcal{B}_{γ} the set of blocks of β coloured with γ . Then it must be:

$$
|\mathcal{B}_{\gamma}|=\frac{v\cdot 3k}{6}.
$$

Since *k* is odd, we get a contradiction.

Now, let $\Sigma = (V, \mathcal{B})$ be a $6CS(v)$, where $v = 12k + 1$, and let $\phi \colon \mathcal{B} \to C$ be a 3-bicolouring of Σ . In this case we proceed as in [9, Lemma 2.1]. We can suppose that $C = \{1, 2, 3\}$ and we denote by *X* the set of vertices incident with blocks of colour 1 and 2, by *Y* the set of vertices incident with blocks of colour 1 and 3 and by *Z* the set of vertices incident with blocks of colour 2 and 3. Let $x = |X|$, $y = |Y|$ and $z = |Z|$.

We can note that these sets are pairwise disjoint and that in each block we can have vertices at most of two types. Moreover, it is easy to see that a block can not contain an odd number of edges having vertices of different types.

This implies that the products *xy, xz, yz* are all even and so among *x*, *y* and *z* at most one is odd. However, since $x + y + z = v$, one of them is odd, while the others are even. Since

$$
|B_1| = \frac{3k \cdot (x+y)}{6},
$$

\n
$$
|B_2| = \frac{3k \cdot (x+z)}{6},
$$

\n
$$
|B_3| = \frac{3k \cdot (y+z)}{6},
$$

then we get a contradiction, because *k* is odd. This shows that there is no 3 $\notin \Omega_2^{(6)}(12k+1)$. By Lemma 2.1, we get the statement. $\Omega_2^{(6)}(12k+1)$. By Lemma 2.1, we get the statement.

Theorem 2.3. *If k is even, then* $\Omega_2^{(6)}(12k+1) = \{2,3\}.$

Proof. Let $V = \mathbb{Z}_{12k+1}$. Consider on \mathbb{Z}_{12k+1} the following base blocks:

$$
A_i = (0, 6k + 1 - i, 5k, 9k + i, 11k + 1, 2k + i),
$$

for $i \in \{1, \ldots, k\}$. If $k = 2h$, assign the colour 1 to the blocks A_i and all their translated forms, for $i \in \{1, ..., h\}$ and the colour 2 to the blocks A_i and all their translated forms, for $i \in \{h+1,\ldots,2h\}$. If B is the set of all these blocks, $\Sigma = (\mathbb{Z}_{12k+1}, \mathcal{B})$ is a $6CS(12k+1)$ and the previous assignment determines a 2-bicolouring of Σ .

Now we prove that $3 \in \Omega_2^{(6)}(12k+1)$. Let $k = 2h$ and consider two disjoint sets *A* and *B*, with $|A| = |B| = 12h$, and en element $\infty \notin A \cup B$. By [15] we can consider two $6CS(12h+1), \Sigma_1 = (A \cup {\infty}, B_1)$ and $\Sigma_2 = (B \cup {\infty}, B_2)$. By [17] we can take a $6CS$ $\Sigma_3 = (K_{A,B}, \mathcal{B}_3)$ on the bipartite graph $K_{A,B}$. Then $\Sigma = (A \cup B \cup \{\infty\}, \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3)$

is a $6CS(12k+1)$. Assigning the colour *i* to the blocks of \mathcal{B}_i , for $i = 1, 2, 3$, we get a 3-bicolouring of the Σ .

This proves that $3 \in \Omega_2^{(6)}(12k+1)$ and by Lemma 2.1 we get the statement. \Box

3. BICOLOURINGS FOR $v = 12k + 9$

In this section we study bicolouring for $6CS$ of order $v = 12k + 9$. First, we determine a bound for the number *c* of colours.

Lemma 3.1. Let $\Sigma = (V, \mathcal{B})$ be a $6CS(v)$, where $v = 12k + 9$, and let $\phi: \mathcal{B} \to C$ be *a c*-bicolouring of Σ *. Then* $c \leq 3$ *.*

Proof. Let $|C| = c$ and let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with *γ* must be incident with precisely $3k + 2$ blocks coloured with *γ*. This means that there are at least $6k + 5$ vertices incident with blocks coloured with γ . This means that

$$
c(5+6k) \le 2(9+12k),
$$

so that $c \leq 3$.

As done in the case $v = 12k + 1$, also in the case $v = 12k + 9$ we are going to get two distinct results, based on the parity of *k*. Indeed, the following result can be proved as Theorem 2.2.

Theorem 3.2. *If k is odd, then* $\Omega_2^{(6)}(12k+9) = \emptyset$ *.*

Proof. The proof proceeds as in Theorem 2.2, because, in a bicolouring of a 6*CS* of order $12k + 9$ on a vertex set *V*, any element $v \in V$ is incident with $3k + 2$ blocks coloured with one colour and $3k + 2$ blocks coloured with another one. So, if *k* is odd, $3k + 2$ is odd too and, proceeding as in Theorem 2.2, we show that $2, 3 \notin \Omega_2^{(6)}(12k + 9)$ for any *k* odd. By Lemma 3.1 the statement follows. \Box

Now we are going to deal with the case $v = 12k + 9$ when k is even. Let us first prove, using the difference method, the following result.

Theorem 3.3. *If k is even, then* $\chi_2^{(6)}(12k+9) = 2$ *for any* $k \ge 0$ *and* $\Omega_2^{(6)}(9) = \{2\}$ *. Proof.* 1) Let $v = 12k + 9$ and let $k = 2h$. Consider on \mathbb{Z}_{24h+9} the following base blocks:

 $A_i = (0, 12h + 5 - i, 20h + 9, 18h + 4 + i, 22h + 9, 4h + 4 + i)$

for $i \in \{1, \ldots, 2h\}$, in the case $h \geq 1$. Consider on \mathbb{Z}_{24h+9} the family A of blocks of all the translated forms of the blocks A_i , for $i \in \{1, ..., 2h\}$. Consider also the following blocks:

$$
B_j = (3j, 3j + 1, 3j + 4, 3j + 5, 3j + 6, 3j + 2),
$$

\n
$$
C_j = (3j, 3j + 3, 3j + 1, 3j + 5, 3j + 2, 3j + 4)
$$

for $j \in \{0, \ldots, 8h + 2\}$. Then $\Sigma = (\mathbb{Z}_{24h+9}, \mathcal{A} \cup \bigcup B_j \cup \bigcup C_j)$ (if $h = 0$ take $\mathcal{A} = \emptyset$) is a $6CS(24h + 9)$.

Let us assign the colour 1 to the blocks A_i and all their translated forms for $i \in \{1, \ldots, h\}$ and all the blocks B_j and the colour 2 to the blocks A_i and all their translated forms for $i \in \{h+1, \ldots, 2h\}$ and all the blocks C_j . In this way we get a 2-bicolouring of Σ .

2) Let $v = 9$, let $\Sigma = (V, \mathcal{B})$ be a $6CS(9)$ and let $\phi : \mathcal{B} \to C$ be a 3-bicolouring of Σ. We can suppose that $C = \{1, 2, 3\}$ and let us denote by \mathcal{B}_i the set of blocks coloured with i and by X_i the set of vertices incident with these blocks. Any vertex $x \in X$ incident with blocks coloured with the colour *i* must be incident with precisely 2 blocks coloured with *i*. So, since $|\mathcal{B}| = 6$, then $|\mathcal{B}_i| = 2$ for any $i = 1, 2, 3$ and by

$$
|\mathcal{B}_i|=\frac{2|X_i|}{6}
$$

we see that it must be $|X_i| = 6$ for any *i*. Let $X = \{a_1, \ldots, a_9\}$ and suppose that $X_1 = \{a_1, \ldots, a_6\}$. We can suppose that the edge $\{a_1, a_2\}$ is not incident with the blocks of \mathcal{B}_1 . This implies that we can suppose that $\{a_1, a_2\}$ will be incident with one of the blocks of \mathcal{B}_2 . So $a_7, a_8, a_9 \in X_2$, but $|X_2| = 6$. This means that we can suppose that $a_3 \in X_2$, but a_3 is adjacent with a_1 and a_2 in the blocks of \mathcal{B}_1 . So in the blocks of \mathcal{B}_2 *a*₃ can be adjacent only with the *a*₇*, a*₈*, a*₉. This is not possible and so by Lemma 3.1 we have that $\Omega_2^{(6)}(9) = \{2\}$. Lemma 3.1 we have that $\Omega_2^{(6)}(9) = \{2\}.$

Now we need to prove that $3 \in \Omega_2(12k+9)$ for k even, $k \geq 2$. In order to do this, we will need some technical lemmas. First, let us recall that the union $G_1 \cup G_2$ of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph having $V_1 \cup V_2$ as vertex set and edges those of $E_1 \cup E_2$.

Definition 3.4. A 1-factorization ${F_1, \ldots, F_{2n-1}}$ of the complete graph K_{2n} is called *uniform* if the graphs $F_i \cup F_j$ are all isomorphic for $i \neq j$.

Since $F_i \cup F_j$ is a 2-regular graph, it is isomorphic to a disjoint union of even cycles. If these cycles have length k_1, \ldots, k_r , then we say that the uniform 1-factorization is of type (k_1, \ldots, k_r) .

Lemma 3.5 ([6,8]). There exists a uniform 1-factorization of K_{12} of type (6,6) and *it is unique up to isomorphisms.*

The previous lemma, together with the following ones, provides us the decomposition technique that will be required later.

Lemma 3.6. Let $h \geq 1$ and let X and Y be disjont sets such that $|X| = 12h$ and $|Y| = 3$ *. Then:*

- 1. *the graph* $K_{X,Y} \cup K_X$ *can be decomposed into* 6*-cycles*;
- 2. *for any r such that* $1 \leq r \leq 5$ *there exist pairwise disjoint factors* F_1, \ldots, F_{2r} *of* K_X *such that the graph* $K_{X,Y} \cup (K_X - F_1 - \ldots - F_{2r})$ *can be decomposed into* 6*-cycles and for any* $j = 0, \ldots, r - 1$ *the graph* $F_{2j+1} \cup F_{2j+2}$ *can be decomposed into* 6*-cycles.*

Proof. The first part of the statement is a direct consequence of the existence of maximum packings of K_n with 6-cycles when $n \equiv 3 \mod 12$ (see [13]). We will prove the second part of the statement by induction. Let $h = 1$. By Lemma 3.5, we can consider a uniform factorization $\mathcal{F} = \{F_1, \ldots, F_{11}\}$ of K_X , with $X = \{0, 1, \ldots, 11\}$. Let $F_{11} = \{\{i, i + 6\} \mid i = 0, ..., 5\}$ and let $Y = \{a, b, c\}$. Then the following cycles:

$$
(a, i+8, b, i, c, i+4) \quad \text{for } i = 0, 1, 2, 3,
$$

$$
(a, 0, 6, b, 7, 1), (a, 2, 8, c, 9, 3), (b, 4, 10, c, 11, 5)
$$

determine a 6-cycles decomposition of the graph $K_{X,Y} \cup F_{11}$. Then Lemma 3.5 easily leads us to the statement in the case $h = 1$. Indeed, $K_X - F_{11} = F_1 \cup ... \cup F_{10}$. This proves the base case $h = 1$, because the factorization $\mathcal F$ is uniform.

Now we prove the inductive step. Let $h > 1$ and let $Y = \{a, b, c\}$. Let $X = \bigcup_{i=1}^{h} X_i$, where $X_i \cap X_j = \emptyset$ for $i \neq j$ and $|X_i| = 12$ for any *i*. Note that

$$
K_X = K_{X_1} \cup \ldots \cup K_{X_h} \cup \bigcup_{i < j} K_{X_i, X_j} \tag{3.1}
$$

and also that

$$
K_{X,Y} = K_{X_1,Y} \cup \ldots \cup K_{X_h,Y}.\tag{3.2}
$$

By induction, for any *i* and *r*, with $1 \leq r \leq 5$, we can find $F_1^{(i)}$,..., $F_{2r}^{(i)}$ such that $K_{X_i,Y} \cup (K_{X_i} - F_1^{(i)} - \ldots - F_{2r}^{(i)})$ can be decomposed into 6-cycles and for any $j = 0, \ldots, r - 1$ $F_{2j+1}^{(i)} \cup F_{2j+2}^{(i)}$ can be decomposed in 6-cycles.

Let $F_j = \bigcup_{i=1}^h F_j^{(i)}$ for any *j*, so that each F_j is a factor of *X* and F_1, \ldots, F_{2r} are pairwise disjoint. So by (3.1) and (3.2) and by the fact that K_{X_i, X_j} can be decomposed into 6-cycles, for any $i \neq j$, F_1, \ldots, F_{2r} are such that $K_{X,Y} \cup (K_X - F_1 - \ldots - F_{2r})$ can be decomposed into 6-cycles. Moreover, obviously for any $j = 0, \ldots, r-1$ $F_{2j+1} \cup F_{2j+2}$
can be decomposed into 6-cycles can be decomposed into 6-cycles.

The last technical lemma needed is the following.

Lemma 3.7. *Let* $h \geq 1$ *and let X and Y be disjont sets such that* $|X| = 12h$ *and* $|Y| = 3$. Then, given a 1-factor F of K_X , the graph K_X $\vee \cup F$ can be decomposed into 6*-cycles.*

Proof. In Lemma 3.6 the statement has been proved in the case $h = 1$. Now let $h > 1$. We know that $|F| = 6h$. So we can decompose *F* in *h* disjoint subsets F_1, \ldots, F_h and we can call X_i the vertex set of F_i . So $X = \bigcup_{i=1}^h X_i$, where $X_i \cap X_j = \emptyset$ for $i \neq j$, $|X_i| = 12$ and F_i is a factor of X_i .

We can apply the statement to each X_i and F_i , so that $K_{X_i,Y} \cup F_i$ can be decomposed into 6-cycles. Now note that

$$
K_{X,Y} \cup F = K_{X_1,Y} \cup \ldots \cup K_{X_h,Y} \cup F_1 \cup \ldots \cup F_h.
$$

This clearly proves the statement.

Now we are ready to prove the following result.

Theorem 3.8. *If k is even,* $k \geq 2$ *, then* $\Omega_2^{(6)}(12k+9) = \{2,3\}$ *.*

Proof. 1) Let $v = 33$. Let us consider four pairwise disjoint sets X, Y, Z and T , with $|X| = 6$, $|Y| = 12$, $|Z| = 3$, $|T| = 12$ and $X = \{x_1, \ldots, x_6\}$, $Y = \{y_1, \ldots, y_{12}\}$, $Z = \{z_1, z_2, z_3\}$ and $T = \{t_1, \ldots, t_{12}\}$. We will determine a 3-bicolouring for a 6*CS* on $X' = X \cup Y \cup Z \cup T$.

Let us consider the factor $F_1 = \{\{x_1, x_2\}, \{x_3, x_4\}, \{x_5, x_6\}\}\$ on K_X . By [1, Theorem 1.1], we can decompose the graph $K_X - F_1$ into 6-cycles, obtaining the blocks A_1 and *A*2. Similarly, we can consider the factor:

$$
F_2 = \{\{y_1, y_2\}, \{y_3, y_4\}, \{y_5, y_6\}, \{y_7, y_8\}, \{y_9, y_{10}\}, \{y_{11}, y_{12}\}\}\
$$

on K_Y . As before, by [1, Theorem 1.1] we can decompose the graph $K_Y - F_2$ into 6-cycles, obtaining the blocks B_1, \ldots, B_{10} . Moreover, by [17] we can decompose the complete bipartite graph $K_{X,Y}$ into 6-cycles, obtaining the blocks C_1, \ldots, C_{12} .

Let us consider, also, the blocks

$$
D_1 = (x_1, x_2, z_1, x_3, z_3, z_2), \quad D_2 = (x_3, x_4, z_3, x_1, z_1, z_2),
$$

\n
$$
D_3 = (x_5, x_6, z_2, x_4, z_1, z_3), \quad D_4 = (x_2, z_3, x_6, z_1, x_5, z_2).
$$

These blocks represent a decomposition of the graph $K_Z \cup F_1 \cup K_X Z$. We will also consider the blocks E_1, \ldots, E_{12} , that we obtain by decomposing $K_{X,T}$ into 6-cycles (again by [17]). Moreover, consider the following blocks:

$$
G_i = (z_1, t_{i+4}, z_3, t_i, z_2, t_{i+8})
$$

for $i = 1, 2, 3, 4$. These blocks represent a decomposition of $K_{Z,T} - \mathcal{G}$, where

$$
\mathcal{G} = \{ \{z_i, t_j\} \mid i = 1, 2, 3, j = 4i - 3, 4i - 2, 4i - 1, 4i \}.
$$

By Lemma 3.5, we can find pairwise disjoint factors F_3 , F_4 , F_5 of K_T in such a way that the graph $K_T - F_3 - F_4 - F_5$ can be decomposed into 6-cycles that we call H_1, \ldots, H_8 .

Consider the graph $K_{Y,Z} \cup F_2$. By Lemma 3.7, we can decompose this graph into 6-cycles I_1, \ldots, I_7 . Similarly, by Lemma 3.7, we can get:

- a decomposition in 6-cycles of the graph *KT ,*{*y*4*,y*5*,y*6} ∪ *F*3, obtaining the blocks $J_1, \ldots, J_7,$
- − a decomposition in 6-cycles of the graph $K_{T, \{y_7, y_8, y_9\}} \cup F_4$, obtaining the blocks $K_1, \ldots, K_7,$
- a decomposition in 6-cycles of the graph *KT ,*{*y*10*,y*11*,y*12} ∪ *F*5, obtaining the blocks L_1, \ldots, L_7 .

At last, decompose $\mathcal{G} \cup K_{T, \{y_1, y_2, y_3\}}$ in the following blocks:

 $M_1 = (z_1, t_2, y_2, t_4, y_1, t_1),$ $M_2 = (z_1, t_4, y_3, t_2, y_1, t_3)$ $M_3 = (z_2, t_6, y_1, t_8, y_2, t_5)$ $M_4 = (z_2, t_8, y_3, t_6, y_2, t_7)$ $M_5 = (z_3, t_{10}, y_1, t_{12}, y_3, t_9),$ $M_6 = (z_3, t_{12}, y_2, t_{10}, y_3, t_{11}),$ $M_7 = (y_1, t_5, y_3, t_1, y_2, t_9)$ $M_8 = (y_1, t_7, y_3, t_3, y_2, t_{11}).$

Let us call $\mathcal B$ the set of all these blocks. Then clearly that the system $\Sigma = (X', \mathcal B)$ is a 6*CS* of order 33.

Now let us consider the colouring $\phi : \mathcal{B} \to \{1, 2, 3\}$ such that:

- the blocks A_i B_i and C_i are coloured with the colour 1,
- the blocks D_i , E_i , G_i and H_i are coloured with the colour 2,
- the remaining blocks I_i , J_i , K_i , L_i and M_i are coloured with the colour 3.

This is a 3-bicolouring of Σ . Indeed, in the blocks coloured with 1 we have only the vertices of *X* and *Y* and each of them belongs to 8 of these blocks; in the blocks coloured with 2 we have only the vertices of *X*, *Z* and *T* and each of them belongs to 8 of these blocks; in the blocks coloured with 3 we have only the vertices of *Y* , *Z* and *T* and each of them belongs to 8 of these blocks. This proves that $3 \in \Omega_2^{(6)}(33)$ and by Lemma 3.1 we get that $\Omega_2^{(6)}(33) = \{2, 3\}.$

2) Let $v = 24h + 9$, with $h \ge 2$. Let us consider the $6CS \Sigma = (X', \mathcal{B})$ of order 33 constructed previously with the given 3-bicolouring. Let \mathcal{B}_1 be the set of blocks coloured with 1, \mathcal{B}_2 the set of blocks coloured with 2 and \mathcal{B}_3 the set of blocks coloured with the colour 3.

We have $X' = X \cup Y \cup Z \cup T$, where $|X| = 6$, $|Y| = 12$, $|Z| = 3$ and $|T| = 12$ and X, Y, Z and T are pairwise disjoint. Let us consider two other sets Y' and T' , disjoint from X', such that $|Y'| = |T'| = 12h - 12$ and $Y' \cap T' = \emptyset$. We will determine a 3-bicolouring for a $6CS$ on $X'' = X' \cup Y' \cup T'$, where $|X''| = 24h + 9$.

Let I_1 be a factor of $K_{Y'}$, so that by [1] we can decompose $K_{Y'} - I_1$ into 6-cycles *A*^{*i*} for $i = 1, ..., (h-1)(12h-14)$. By [17], we can also decompose $K_{X\cup Y,Y'}$ into 6-cycles *B*1,. . . ,*B*³⁶*h*−³⁶.

By Lemma 3.6, we can find pairwise disjoint factors I_2 , I_3 , I_4 and I_5 of $K_{T'}$ such that $K_{Z,T'} \cup (K_{T'} - I_2 - I_3 - I_4 - I_5)$ can be decomposed into 6-cycles C_i for $i = 1, \ldots, (h-1)(12h-11)$ and $I_2 \cup I_3$ and $I_4 \cup I_5$ can also decomposed into 6-cyles. By [17], we can also decompose $K_{X\cup T,T'}$ into 6-cycles D_1,\ldots,D_{36h-36} .

By Lemma 3.7, we can decompose $K_{Y',Z} \cup I_1$ into 6-cycles E_1, \ldots, E_{7h-7} . By [17], we can decompose $K_{Y\cup Y',T'}$ into 6-cycles $F_1,\ldots, F_{2h(12h-12)}$ and $K_{Y',T}$ into 6-cycles

 G_1, \ldots, G_{24h-24} . At last we can decompose $I_2 \cup I_3$ and $I_4 \cup I_5$ into 6-cycles H_1, \ldots, H_{4h-4} . Let us call β the set of these blocks. Then it is easily seen that the system $\Sigma = (X'', \mathcal{B})$ is a 6*CS* of order $24h + 9$.

Now let us consider the colouring $\phi: \mathcal{B} \to \{1, 2, 3\}$ such that:

- the blocks of \mathcal{B}_1 and A_i and B_i are coloured with the colour 1,
- the blocks of \mathcal{B}_2 and C_i and D_i are coloured with the colour 2,
- the remaining blocks of \mathcal{B}_3 and the remaining blocks E_i , F_i , G_i and H_i are coloured with the colour 3.

This is a 3-bicolouring of Σ . Indeed, in the blocks coloured with 1 we have only the vertices of X, Y and Y' and each of them belongs to $6h+2$ of these blocks; in the blocks coloured with 2 we have only the vertices of X , Z , T and T' and each of them belongs to $6h + 2$ of these blocks; in the blocks coloured with 3 we have only the vertices of *Y*, *Y*^{\prime}, *Z*, *T* and *T*^{\prime} and each of them belongs to $6h + 2$ of these blocks. This proves that $3 \in \Omega_2^{(6)}(24h + 9)$ and, by Lemma 3.1, we get that $\Omega_2^{(6)}(24h + 9) = \{2, 3\}$ for any $h \geq 1$.

4. LOWER 3-CHROMATIC INDEX

In this section we study tricolourings, so that $s = 3$, analizing the lower 3-chromatic index. First, we determine an upper bound for the number of colours required.

Lemma 4.1. *Let* $\Sigma = (V, \mathcal{B})$ *be a* 6*CS*(*v*) *and let* $\phi : \mathcal{B} \to C$ *be a c-tricolouring of* Σ *. Then:*

- 1. *if* $v = 13$, $c \le 7$, 2. *if* $v \equiv 1 \mod 12$ *and* $v > 13$, $c \le 8$,
- 3. *if* $v \equiv 9 \mod 12, c \leq 9$.

Proof. Let $v = 12k + 1$, for some $k \ge 1$ and let $|C| = c$ and let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with γ must be incident with precisely 2*k* blocks coloured with γ . This means that there are at least $4k + 1$ vertices incident with blocks coloured with *γ*. This means that

$$
c(1+4k) \le 3(1+12k),
$$

so that $c \leq 8$, if $k \geq 2$, otherwise we get $c \leq 7$ if $k = 1$.

Let $v = 12k + 9$, for some $k \geq 0$ and let $|C| = c$ e let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with γ must be incident with either $2k + 2$ or $2k + 1$ blocks coloured with γ . This means that there are at least $4k + 3$ vertices incident with blocks coloured with γ . This means that

$$
c(3+4k) \le 3(9+12k),
$$

so that $c < 9$.

Since $v \equiv 1,9 \mod 12$, we are going to distinguish the two cases, being this time the case $v \equiv 1 \mod 12$ more difficult to deal with. Indeed, we will determine the exact value of $\chi_3^{(6)}(12k+1)$ only for $k=1$, $k=2$ and $k\equiv 0 \mod 3$, while we will determine the exact value of $\chi_3^{(6)}(12k+9)$ for any $k \geq 0$.

Theorem 4.2. *If* $k \equiv 1,2 \mod 3$, $\chi_3^{(6)}(12k + 1) \geq 4$. *If* $k \equiv 0 \mod 3$, $\chi_3^{(6)}(12k+1) = 3.$

Proof. Let $\Sigma = (V, \mathcal{B})$ be a $6CS(v)$ and let $\phi : \mathcal{B} \to C$ be a 3-tricolouring of Σ . Any element $v \in V$ incident with blocks coloured with γ must be incident with precisely 2*k* blocks coloured with *γ*. So, if \mathcal{B}_{γ} is the set of blocks coloured with *γ*, it must be

$$
|B_{\gamma}| = \frac{2kv}{6} = \frac{kv}{3}.
$$

However, if $k \equiv 1, 2 \mod 3$, this number is not an integer. This shows that, if $k \equiv 1, 2 \mod 3, \ \chi_3^{(6)}(12k+1) \geq 4.$

Now, let $v = 36h + 1$, for some $h \ge 1$. Let us consider three sets A, B, C such that $|A| = |B| = |C| = 12h$ and $A \cap B = A \cap C = B \cap C = \emptyset$ and let us consider also an element $\infty \notin A \cup B \cup C$.

By [15], we can decompose the complete graphs $K_{A\cup\{\infty\}}$, $K_{B\cup\{\infty\}}$ and $K_{C\cup\{\infty\}}$ into 6-cycles, that we call, respectively, D_i , E_i and F_i for $i = 1, \ldots, 12h^2 + h$. Moreover, by [17] we can decompose the complete bipartite graphs $K_{A,B}$, $K_{A,C}$ and $K_{B,C}$ into 6-cycles that we call, respectively, G_i , H_i and I_i for $i = 1, \ldots, 24h^2$. Called β the set of all these blocks, it is easy to see that the system $\Sigma = (A \cup B \cup C \cup \{\infty\}, \mathcal{B})$ is a 6*CS* of order 36*h* + 1.

Consider, now, the colouring $\phi: \mathcal{B} \to \{1,2,3\}$ obtained by assigning the colour 1 to the blocks D_i and I_i , the colour 2 to the blocks E_i and H_i and the colour 3 to the blocks F_i and G_i . Then it is easy to see that this is a 3-tricolouring of Σ . \Box

In the following result we see that the lower 3-chromatic index in the cases $v = 13$ and $v = 25$ is 4. It is reasonable to conjecture that, in general, if $k \equiv 1, 2 \mod 3$, then $\chi_3^{(6)}(12k+1) = 4.$

Theorem 4.3. $\chi_3^{(6)}(13) = 4$ *and* $\chi_3^{(6)}(25) = 4$ *.*

Proof. 1) Let $v = 13$. Let us consider three sets $A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3, b_4\},\$ $C = \{c_1, c_2, c_3, c_4\}$, pairwise disjoint, and an element $\infty \notin A \cup B \cup C$. On $X =$ $A \cup B \cup C \cup \{\infty\}$ let us consider the following blocks:

$$
D_1 = (\infty, a_1, b_2, a_3, b_3, a_2), \t D_2 = (b_1, b_2, b_4, a_4, \infty, a_3), \t D_3 = (b_3, b_4, a_1, a_2, b_1, a_4),D_4 = (\infty, c_1, a_1, a_3, a_2, c_2), \t D_5 = (c_1, c_3, c_2, a_4, a_3, c_4), \t D_6 = (c_3, \infty, c_4, a_2, a_4, a_1),D_7 = (\infty, b_1, c_2, b_2, c_3, b_3), \t D_8 = (c_1, c_2, c_4, b_4, \infty, b_2), \t D_9 = (c_3, c_4, b_1, b_3, c_1, b_4),D_{10} = (a_1, b_3, b_2, a_2, b_4, c_2), \t D_{11} = (a_1, b_1, c_3, a_4, b_2, c_4), \t D_{12} = (a_2, c_1, b_1, b_4, a_3, c_3),D_{13} = (a_3, c_1, a_4, c_4, b_3, c_2).
$$

Then $\Sigma = (X, \bigcup_{i=1}^{13} D_i)$ is 6*CS* of order 13. Let us consider, now, the colouring ϕ : $\bigcup_{i=1}^{13} D_i \rightarrow \{1, 2, 3, 4\}$ obtained in the following way:

- assign the colour 1 to the blocks D_1 , D_2 and D_3 ,
- assign the colour 2 to the blocks D_4 , D_5 and D_6 ,
- assign the colour 3 to the blocks D_7 , D_8 and D_9 ,
- assign the colour 4 to the remaning blocks D_{10} , D_{11} , D_{12} and D_{13} .

Then ϕ is a 4-tricolouring of Σ , so that $4 \in \Omega_3^{(6)}(13)$. By Theorem 4.2, we get that $\chi_3^{(6)}(13) = 4.$

2) Let $v = 25$. Let $X = \mathbb{Z}_4 \times \{1, 2, 3, 4, 5, 6\} \cup \{\infty\}$, with $\infty \notin \mathbb{Z}_4 \times \{1, 2, 3, 4, 5, 6\}$. Let us consider on *X* the following blocks:

 $A_1 = (0_5, 1_5, 1_4, 3_5, 2_5, 0_4), \quad A_2 = (0_5, 2_5, 3_4, 1_5, 3_5, 2_4), \quad A_3 = (0_5, 3_5, 0_4, 1_5, 2_5, 1_4),$ $A_4 = (0_6, 1_6, 1_3, 3_6, 2_6, 0_3), \quad A_5 = (0_6, 2_6, 3_3, 1_6, 3_6, 2_3), \quad A_6 = (0_6, 3_6, 0_3, 1_6, 2_6, 1_3),$ $A_7 = (\infty, 0_5, 3_4, 0_2, 3_3, 0_6), \quad A_8 = (\infty, 1_5, 2_4, 0_2, 2_3, 1_6), \quad A_9 = (\infty, 2_5, 2_4, 2_2, 2_3, 2_6),$ $A_{10} = (\infty, 3_5, 3_4, 2_2, 3_3, 3_6), \quad A_{11} = (0_2, 0_4, 3_2, 2_4, 1_2, 1_4), \quad A_{12} = (0_2, 0_3, 3_2, 2_3, 1_2, 1_3),$ $A_{13} = (2_2, 0_4, 1_2, 3_4, 3_2, 1_4), \quad A_{14} = (2_2, 0_3, 1_2, 3_3, 3_2, 1_3),$

which represent a decomposition in 6-cycles of the graph:

$$
K_{\{0_5,1_5,2_5,3_5\}} \cup K_{\{0_6,1_6,2_6,3_6\}} \cup K_{\{0_2,1_2,2_2,3_2\}} \cup \{0_5,1_5,2_5,3_5\},\{0_4,1_4,2_4,3_4\} \cup K_{\{0_2,1_2,2_2,3_2\}} \cup \{0_6,1_6,2_6,3_6\},\{0_3,1_3,2_3,3_3\} \cup K_{\{\infty\},\{0_5,1_5,2_5,3_5\}} \cup \{0_6,1_6,2_6,3_6\}}.
$$

Also, by [15], we can decompose:

– the complete graph on {01*,* 11*,* 21*,* 31}∪{02*,* 12*,* 22*,* 32}∪{∞} into 6-cycles *B*1,. . . ,*B*6, – the complete graph on {03*,* 13*,* 23*,* 33}∪{04*,* 14*,* 24*,* 34}∪{∞} into 6-cycles *C*1,. . . ,*C*6.

By [16, Theorem 2.2], given $K_{\{0_1,1_1,2_1,3_1\},\{0_5,1_5,2_5,3_5\},\{0_6,1_6,2_6,3_6\}}$, we can decompose this equipartite graph into 6-cycles D_1, \ldots, D_8 . Moreover, let us consider the blocks $E_{ij} = (i_1, j_3, i_5, j_2, i_6, j_4)$ for any $i, j \in \{0, 1, 2, 3\}$. Let B the set of all these blocks. Then $\Sigma = (X, \mathcal{B})$ is a 6*CS* of order 25.

Consider, now, the colouring $\phi: \mathcal{B} \to \{1, 2, 3, 4\}$ obtained in the following way:

- assign the colour 1 to the blocks *Aⁱ* ,
- assign the colour 2 to the blocks B_i ,
- $-$ assign the colour 3 to the blocks C_i and D_i ,
- assign the colour 4 to the blocks E_{ij} .

Then ϕ is a 4-tricolouring of Σ , so that $4 \in \Omega_3^{(6)}(25)$ and by Theorem 4.2 we get that $\chi_3^{(6)}(25) = 4.$ \Box

In the following theorem we will see that $3 \in \Omega_3^{(6)}(12k+9)$ for any $k \ge 0$, using the difference method technique.

Theorem 4.4. *For any* $k \ge 0$, $\chi_3^{(6)}(12k+9) = 3$ *.*

Proof. 1) Let $k = 0$. Let us consider the following 6-cycles on $X = \mathbb{Z}_9$:

$$
A_1 = (1, 2, 3, 4, 5, 7),
$$
 $A_2 = (1, 3, 0, 6, 2, 8),$ $A_3 = (1, 6, 3, 5, 2, 4),$
\n $A_4 = (6, 7, 4, 8, 0, 5),$ $A_5 = (1, 5, 8, 7, 2, 0),$ $A_6 = (3, 7, 0, 4, 6, 8).$

Given $\mathcal{B} = \bigcup_{i=1}^{6} A_i$, the system $\Sigma = (X, \mathcal{B})$ is a 6CS on *X*. Consider, now, the colouring $\phi: \mathcal{B} \to \{1, 2, 3\}$ obtained by assigning the colour 1 to the blocks A_1 and A_2 , the colour 2 to the blocks A_3 and A_4 and the colour 3 to the blocks A_5 and A_6 . Then it is easy to see that this is a 3-tricolouring of Σ .

2) Let $k \ge 1$ and let $v = 12k + 9$. Consider $X = \mathbb{Z}_{4k+3} \times \{1, 2, 3\}$. We will construct a 6*CS* Σ on *X* and a 3-tricolouring of Σ. Consider the following blocks on *X*:

- *A^j* = (01*, j*1*,* 03*,*(4*k* + 3 − *j*)3*,* 02*,*(4*k* + 3 − *j*)2) for *j* ∈ {1*, . . . , k*},
- *B^j* = (01*, j*1*,*(2*k*+1)3*,*(*j*+2*k*+1)3*,*(3*k*+2)2*,*(*j*+3*k*+2)2) for *j* ∈ {*k*+1*, . . . ,* 2*k*+1}, $-C_j = (0_1, j_2, 0_3, j_1, 0_2, j_3)$ for $j \in \{k+1, \ldots, 2k+1\}.$

By using the difference method on X it is easy to see that, if $\mathcal B$ is the collection of all these blocks and their translates, the system $\Sigma = (X, \mathcal{B})$ is a 6*CS* on *X*.

Suppose now that $k = 1$. Consider the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ on Σ obtained in the following way:

- 1. assign the colour 1 to the block A_1 and all its translates and to the blocks $C_2 + i$ for $i \in \{0, \ldots, 4\},\$
- 2. assign the colour 2 to the blocks B_2 and all its translates and to the blocks $C_3 + i$ for $i \in \{0, 1, 5, 6\},\$
- 3. assign the colour 3 to the block B_3 and all its translates, to the blocks $C_2 + i$ for $i = 5, 6$ and to the blocks $C_3 + i$ for $i = 2, 3, 4$.

This is a 3-tricolouring of Σ . Any element in *X* belongs to 10 blocks of Σ and in a 3-tricolouring of Σ these blocks must be divided into three sets of cardinality 4, 3 and 3, each a subset of a colour class. With the assigned colouring we see that:

- the elements $2_i, 3_i, 4_i$, for $i = 1, 2, 3$, belong to 4 blocks coloured with 1, while the remaining ones belong to 3 blocks coloured with 1,
- the elements 1_i , for $i = 1, 2, 3$, belong to 4 blocks coloured with 2, while the remaining ones belong to 3 blocks coloured with 2,
- the elements 0_i , 5_i , 6_i , for $i = 1, 2, 3$, belong to 4 blocks coloured with 3, while the remaining ones belong to 3 blocks coloured with 3.

Suppose now that $k \geq 2$ and consider the colouring $\phi \colon \mathcal{B} \to \{1,2,3\}$ obtained in the following way:

- 1. assign the colour 1 to the blocks A_j , for $j \in \{1, \ldots, k\}$, and all their translates and to the blocks $C_{2k} + i$ for $i \in \{0, ..., 3k + 1\},$
- 2. assign the colour 2 to the blocks B_j , for $j \in \{k+1, \ldots, 2k\}$, and all their translates and to the blocks $C_{2k+1} + i$ for $i \in \{0, ..., 2k-1\} \cup \{3k+2, ..., 4k+2\}$,
- 3. assign the colour 3 to the block B_{2k+1} and all its translates, to the blocks C_i , for $j \in \{k+1,\ldots,2k-1\}$, and all their translates, to the blocks $C_{2k} + i$ for $i \in \{3k+2,\ldots, 4k+2\}$ and to the blocks $C_{2k+1} + i$ for $i \in \{2k,\ldots, 3k+1\}.$

This is a 3-tricolouring of Σ . Any elements in *X* belongs to $6k + 4$ blocks of Σ and in a 3-tricolouring of Σ these blocks must be divided into three sets of cardinality $2k + 2$. $2k + 1$ and $2k + 1$, each a subset of a colour class. With the assigned colouring we see that:

− the elements $\{0_i, \ldots, (k-2)_i\} \cup \{(2k)_i, \ldots, (3k+1)_i\}$, for $i = 1, 2, 3$, belong to $2k+2$ blocks coloured with 1, while the remaining elements belong to $2k+1$ blocks coloured with 1,

- *−* the elements ${k_i, \ldots, (2k-1)_i}$, for $i = 1, 2, 3$, and ${(3k+2)_i, \ldots, (4k)_i}$ for $i = 1, 2, 3$, belong to $2k + 2$ blocks coloured with 2, while the remaining elements belong to $2k+1$ blocks coloured with 2,
- − the elements $(k-1)$ ^{*i*}, $(4k+1)$ ^{*i*}, $(4k+2)$ ^{*i*}, for *i* = 1, 2, 3, belong to 2*k* + 2 blocks coloured with 3, while the remaining elements belong to $2k + 1$ blocks coloured with 3.

This shows that ϕ is a 3-tricolouring of Σ .

 \Box

5. UPPER 3-CHROMATIC INDEX

In this last section we study the upper 3-chromatic index, finding, in general, an upper bound and in just some cases its exact value. Again, we will study separately the cases $v = 12k + 1$ and $v = 12k + 9$.

Theorem 5.1. $\bar{\chi}_3^{(6)}(12k+1) = 7$ *for* $k \equiv 0,2 \mod 3$ *and* $\bar{\chi}_3^{(6)}(12k+1) \le 7$ *for* $k \equiv 1 \mod 3$.

Proof. By Lemma 4.1, we know that $\bar{\chi}_3^{(6)}(12k+1) \leq 8$ for $k \geq 2$, while $\bar{\chi}_3^{(6)}(13) \leq 7$. So we can suppose that $k \geq 2$. Suppose that there exists an 8-tricolouring of a 6*CS* $\Sigma = (X, \mathcal{B})$ of order $12k + 1$. Let \mathcal{B}_i be the family of blocks coloured with the colour *i* and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i . Then any $x \in X_i$ belongs to 2*k* blocks of \mathcal{B}_i , so that $|X_i| \geq 4k + 1$ for any *i*. So we have that $|X_i| = 4k + 1 + k_i$ for any *i*. However, we know that

$$
\sum_{i=1}^{8} |X_i| = 3(12k + 1) \Rightarrow \sum_{i=1}^{8} k_i = 4k - 5.
$$

Note now that, if $x, y \in X_i \cap X_j$, with $x \neq y$ and $i \neq j$, then the edge $\{x, y\}$ may belong to just one block either in \mathcal{B}_i or in \mathcal{B}_j . So y is either one of the elements of X_i not adjacent to x in the blocks of \mathcal{B}_i (of which there are at most k_i) or one of the elements of X_j not adjacent to x in the blocks of \mathcal{B}_j (of which there are at most k_j). This means that

$$
|X_i \cap X_j| \le k_i + k_j + 1.
$$

So we have

$$
2|X_i| = \sum_{j \in \{1, ..., 8\} \setminus \{i\}} |X_i \cap X_j| \Rightarrow 2(4k + 1 + k_i) \le \sum_{j \in \{1, ..., 8\} \setminus \{i\}} (k_i + k_j + 1) \\
\Rightarrow 8k + 2 + 2k_i \le 6k_i + 4k + 2 \Rightarrow k_i \ge k.
$$

Since $\sum_{i=1}^{8} k_i = 4k - 3$, we get $4k - 3 \ge 8k$, so that $4k \le -3$, which is a contradiction. So $\overline{\chi}_3^{(6)}(12k+1) \le 7$ for any $k \ge 1$.

Now, let $k \equiv 0, 2 \mod 3$ and let $v = 12k + 1$. Let us consider A_1, \ldots, A_6 pairwise disjoint sets such that $|A_i| = 2k$ for any *i* and take an element $\infty \notin A_i$ for any *i*. Let

 $X = \bigcup_{i=1}^{6} A_i \cup \{\infty\}$. By [15], we can decompose the complete graph $K_{A_{2i+1}\cup A_{2i+2}\cup\{\infty\}}$ for $i = 0, 1, 2$ into 6-cycles determining the system $\Sigma_i = (A_{2i+1} \cup A_{2i+2} \cup {\infty}, B_i)$ for $i = 0, 1, 2$. By [16], we can decompose the complete equipartite graphs K_{A_1, A_3, A_5} , K_{A_1, A_4, A_6} , K_{A_2, A_3, A_6} and K_{A_2, A_4, A_5} into 6-cycles, determining, respectively, the family of blocks C_1 , C_2 , C_3 and C_4 .

It is easy to see that $\Sigma = (X, \bigcup_{i=1}^3 \mathcal{B}_i \cup \bigcup_{i=1}^4 \mathcal{C}_i)$ is a 6*CS* of order *v*. Let $\phi: \bigcup_{i=1}^3 \mathcal{B}_i \cup \bigcup_{i=1}^4 \mathcal{C}_i \rightarrow \{1,\ldots,7\}$ be a colouring which assigns the colour *i* to the blocks of \mathcal{B}_i , for $i = 1, 2, 3$ and the colour *j* to the blocks of C_{j-3} for $j = 4, 5, 6, 7$. It is easy to see that ϕ is a 7-tricolouring of Σ and this proves that $\overline{\chi}_3^{(6)}(12k+1) = 7$ for $k \equiv 0, 2 \mod 3$. \Box

It is possible to determine the spectrum of tricolourings for 6*CS* of order 13.

Theorem 5.2. $\Omega_3^{(6)}(13) = \{4, 5\}.$

Proof. Let $\Sigma = (X, \mathcal{B})$ be a 6*CS*(13). We need to show that, given a tricolouring $\phi: \mathcal{B} \to \{1, \ldots, c\}$, then $c \leq 5$. By Lemma 4.1, we know that $c \leq 7$. Let \mathcal{B}_i the set of blocks coloured with *i* and X_i the set of vertices incident with the blocks of B_i .

Let $c = 7$. It must be $|B_i| \ge 2$ for any *i*, while however

$$
13 = |\mathcal{B}| = \sum_{i=1}^{7} |\mathcal{B}_i|.
$$

This is not possible and so $c \leq 6$.

Let $c = 6$. Since $|B_i| \ge 2$ for any *i* and $13 = |\mathcal{B}| = \sum_{i=1}^6 |\mathcal{B}_i|$, then we can say that $|\mathcal{B}_i| = 2$ for $i = 1, ..., 5$ and $|B_6| = 3$. Note that $|\mathcal{B}_i| = \frac{2|X_i|}{6}$ and so $|X_i| = 6$ for $i = 1, \ldots, 5$ and $|X_6| = 9$. Since, for any $i = 1, \ldots, 5$, any $x \in X_i$ is incident to both blocks of \mathcal{B}_i , we see that for any $x \in X_i$ there exists just one $y \in X_i$ such that the edge $\{x, y\}$ does not belong to the blocks of \mathcal{B}_i . This implies that $|X_i \cap X_j| \leq 2$ for any $i, j = 1, \ldots, 5, i \neq j$. However,

$$
39 = 3|X| = \sum_{1 \le i < j \le 6} |X_i \cap X_j| \Rightarrow 2|X_6| = \sum_{i=1}^5 |X_i \cap X_6| \ge 19.
$$

Since $|X_6| = 9$, we have a contradiction, and so $c \leq 5$.

Now, by Theorem 4.3, to get the statement we need to show that there exists a 5-tricolouring of a $6CS$ of order 13. On \mathbb{Z}_{13} consider the following blocks:

- *A*¹ and *A*2, obtained by decomposing *K*{0*,*1*,*2*,*3*,*4*,*5} − {{0*,* 1}*,* {2*,* 3}*,* {4*,* 5}} (see $[1,$ Theorem 1.1]) in 6-cycles,
- *− A*₃ and *A*₄, obtained by decomposing $K_{\{0,1,6,7,8,9\}}$ − {{0*,* 6}*,* {1*,* 7}*,* {8*,* 9}} in 6-cycles,
- *A*⁵ and *A*6, obtained by decomposing *K*{0*,*2*,*6*,*10*,*11*,*12} − {{0*,* 2}*,* {6*,* 10}*,* {11*,* 12}} in 6-cycles,
- $A_7 = (3, 8, 4, 7, 5, 9), A_8 = (3, 11, 4, 10, 5, 12), A_9 = (7, 11, 8, 10, 9, 12), A_{10} =$ $(1, 7, 3, 6, 5, 11), A_{11} = (1, 10, 3, 2, 8, 12), A_{12} = (2, 7, 10, 6, 4, 9)$ and $A_{13} =$ (4*,* 5*,* 8*,* 9*,* 11*,* 12).

It is easy to see that the system $\Sigma = (\mathbb{Z}_{13}, \bigcup_{i=1}^{13} A_i)$ is a 6CS(13). Let us consider now a colouring $\phi: \bigcup_{i=1}^{13} A_i \rightarrow \{1, \ldots, 5\}$ defined in the following way:

- assign the colour 1 to the blocks *A*1*, A*2,
- assign the colour 2 to the blocks *A*3*, A*4,
- assign the colour 3 to the blocks A_5, A_6 .
- assign the colour 4 to the blocks A_7, A_8, A_9 ,
- assign the colour 5 to the blocks $A_{10}, A_{11}, A_{12}, A_{13}$.

It is easy to see that this is a 5-tricolouring of Σ .

Now we determine an upper bound for $\overline{\chi}_3^{(6)}(12k+9)$.

Theorem 5.3. $\overline{\chi}_3^{(6)}(12k+9) \leq 7$ *for* $k \geq 1$ *.*

Proof. By Lemma 4.1, we know that $\overline{\chi}_3^{(6)}(12k+9) \leq 9$.

Suppose that there exists a 9-tricolouring of a $6CS \Sigma = (X, \mathcal{B})$ of order $12k + 9$. Let \mathcal{B}_i be the family of blocks coloured with the colour *i* and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i . Then any $x \in X_i$ belongs to either $2k + 1$ or $2k + 2$ blocks of \mathcal{B}_i , so that $|X_i| \ge 4k + 3$ for any *i*. So we have that $|X_i| = 4k + 3 + k_i$ for any *i*, with $k_i \geq 0$. However we know that

$$
\sum_{i=1}^{9} |X_i| = 3(12k + 9) \Rightarrow \sum_{i=1}^{9} k_i = 0.
$$

So $k_i = 0$ for any *i*. However, this is not possible, because in such a way no element of *X* belongs to $2k + 2$ blocks of \mathcal{B}_i for some *i*. So we have a contradiction and $\overline{\chi}_3^{(6)}(12k+9) \leq 8.$

As before, suppose that there exists an 8-tricolouring of a $6CS \Sigma = (X, \mathcal{B})$ of order $12k + 9$. Let \mathcal{B}_i be the family of blocks coloured with the colour *i* and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i . Then any $x \in X_i$ belongs to either $2k+1$ or $2k + 2$ blocks of \mathcal{B}_i , so that $|X_i| \geq 4k + 3$ for any *i*. So we have that $|X_i| = 4k + 3 + k_i$ for any *i*, with $k_i \geq 0$. However,

$$
\sum_{i=1}^{8} |X_i| = 3(12k + 9) \Rightarrow \sum_{i=1}^{8} k_i = 4k + 3.
$$

Note now that, if $x, y \in X_i \cap X_j$, with $x \neq y$ and $i \neq j$, then the edge $\{x, y\}$ may belong to just one block either in \mathcal{B}_i or in \mathcal{B}_j . So *y* is either one of the elements of X_i not adjacent to x in the blocks of \mathcal{B}_i (of which there are at most k_i) or one of the elements of X_i not adjacent to x in the blocks of \mathcal{B}_i (of which there are at most k_i). This means that

$$
|X_i \cap X_j| \le k_i + k_j + 1.
$$

So we have

$$
2|X_i| = \sum_{j \in \{1, \dots, 8\} \setminus \{i\}} |X_i \cap X_j| \Rightarrow 2(4k + 3 + k_i) \le \sum_{j \in \{1, \dots, 8\} \setminus \{i\}} (k_i + k_j + 1)
$$

$$
\Rightarrow 8k + 6 + 2k_i \le 6k_i + 4k + 10 \Rightarrow k_i \ge k - 1.
$$

Since $\sum_{i=1}^{8} k_i = 4k + 3$, we get $4k + 3 \ge 8k - 8$, so that $4k \le 11$. This means that the only possibilities are $k = 2$ and $k = 1$.

Let $k = 2$, so that $v = 33$ and any vertex $x \in X_i$ belongs to either 6 or 5 blocks of \mathcal{B}_i . Since $k_i \geq k-1$, we have that $k_i \geq 1$ for any *i*. Moreover, $\sum_{i=1}^8 k_i = 4k+3 = 11$. So we can suppose that $k_i = 1$ and $|X_i| = 12$ for any $i = 1, \ldots, 5$. This means that any element in X_i , for $i = 1, \ldots, 5$, belongs to exactly 5 blocks of \mathcal{B}_i and that for any $x \in X_i$ there exists just one $y \in X_i$ such that $\{x, y\}$ is not incident with some block of \mathcal{B}_i . In particular, we get that $X_i \cap X_j \cap X_k = \emptyset$ for any pairwise distinct *i*, *j*, *k* = 1, ..., 5. Let us recall also that $|X_i \cap X_j| \leq k_i + k_j + 1 = 3$ for any $i, j = 1, \ldots, 5$. Since

$$
33 \ge |X_1 \cup \ldots \cup X_5| = \sum_{i=1}^5 |X_i| - \sum_{1 \le i < j \le 5} |X_i \cap X_j| \Rightarrow \sum_{1 \le i < j \le 5} |X_i \cap X_j| \ge 27,
$$

we see that there exists $i, j = 1, \ldots, 5$, with $i \neq j$, such that $|X_i \cap X_j| = 3$. Let $X_i \cap X_j = \{x, y, z\}$. By what remarked previously, we can suppose that $\{x, y\}$ is incident with some block in \mathcal{B}_i and similarly either $\{x, z\}$ or $\{y, z\}$ to some block in \mathcal{B}_i . In both cases we get a contradiction and so we see that $k = 2$ is impossible.

So let $k = 1$. In this case, $|X_i| = 7 + k_i$ for any *i* and $\sum_{i=1}^{8} k_i = 7$. So we can say that $k_1 = 0$ and $|X_1| = 7$. Since in this case $v = 21$ and any $x \in X_i$ belongs to either 4 or 3 blocks of \mathcal{B}_i , we can say that the blocks of \mathcal{B}_1 are a decomposition of the complete graph on *X*₁. By [15], this is impossible because $7 \not\equiv 1, 9 \mod 12$.

At last we determine the spectrum of $\Omega_3^{(6)}(9)$.

Theorem 5.4. $\Omega_3^{(6)}(9) = \{3, 4\}.$

Proof. By Lemma 4.1, we know that $\overline{\chi}_3^{(6)}(9) \leq 9$. Let $\Sigma = (X, \mathcal{B})$ be a 6*CS* and let $\phi: \mathcal{B} \to \{1, 2, \ldots, c\}$ be *c*-tricolouring of Σ . Since $|\mathcal{B}| = 6$, it follows that $c \leq 6$.

Since ϕ is a tricolouring, we see that any vertex belongs to 4 blocks, 2 of them coloured with the same colour and the other two with other two different colours. So, if $c = 6$, then any two blocks are coloured with different colours, which is clearly impossible in a tricolouring. If $c = 5$, then only 2 of 6 blocks are coloured with the same colour. So at most only 6 of the 9 vertices belongs to two blocks coloured with same colour. So $c \leq 4$.

Now we will prove that $\overline{\chi}_3^{(6)}(9) = 4$. On $X = \mathbb{Z}_9$ consider the following blocks:

$$
B_j = (3j, 3j + 1, 3j + 4, 3j + 5, 3j + 6, 3j + 2),
$$

\n
$$
C_j = (3j, 3j + 3, 3j + 1, 3j + 5, 3j + 2, 3j + 4)
$$

for $j = 0, 1, 2$. Then $\Sigma = (X, \bigcup_{j=0}^{2} B_j \cup C_j)$ is a 6*CS* on *X*. Consider the following colouring $\phi: \bigcup_{j=0}^{2} B_j \cup C_j \to \{1, 2, 3, 4\}$:

- assign the colour 1 to the blocks B_i for $j = 0, 1, 2$,
- assign the colour *j*, for *j* = 2*,* 3*,* 4, to the block *C^j*−².

Then it is easy to see that ϕ is a 4-tricolouring of Σ , so that $\overline{\chi}_3^{(6)}(9) = 4$. By Theorem 4.4, we get that $\Omega_3^{(6)}(9) = \{3, 4\}.$ \Box

REFERENCES

- [1] B. Alspach, H. Gavlas, *Cycle decompositions of* K^n and $K^n I$, J. Combin. Theory Ser. B **81** (2001), 77–99.
- [2] G. Bacso, Zs. Tuza, V. Voloshin, *Unique colourings of bi-hypergraphs*, Australas. J. Combin. **27** (2003), 33–45.
- [3] P. Bonacini, L. Marino, *Equitable tricolourings for* 4*-cycle systems*, Applied Mathematical Sciences **9** (2015) 58, 2881–2887.
- [4] P. Bonacini, L. Marino, *Equitable block colourings*, Ars Comb. **120** (2015), 255–258.
- [5] Cs. Bujtas, Zs. Tuza, V. Voloshin, *Hypergraph Colouring*, [in:] L.W. Beineke, R.J. Wilson (eds), Topics in Chromatic Graph Theory, Cambridge University Press, 2015, 230–254.
- [6] P. Cameron, *Parallelisms in complete designs*, Cambridge University Press, Cambridge, 1976.
- [7] C.J. Colbourn, A. Rosa, *Specialized block-colourings of Steiner triple systems and the upper chromatic index*, Graphs Combin. **19** (2003), 335–345.
- [8] J.H. Dinitz, D.K. Garnick, B.D. McKay, *There are 526,915,620 nonisomorphic one-factorizations of K*12, J. Combin. Des. **2** (1994) 4, 273–285.
- [9] L. Gionfriddo, M. Gionfriddo, G. Ragusa, *Equitable specialized block-colourings for* 4*-cycle systems – I*, Discrete Math. **310** (2010), 3126–3131.
- [10] M. Gionfriddo, G. Quattrocchi, *Colouring 4-cycle systems with equitable coloured blocks*, Discrete Math. **284** (2004), 137–148.
- [11] M. Gionfriddo, G. Ragusa, *Equitable specialized block-colourings for 4-cycle systems – II*, Discrete Math. **310** (2010), 1986–1994.
- [12] M. Gionfriddo, P. Horak, L. Milazzo, A. Rosa, *Equitable specialized block-colourings for Steiner triple systems*, Graphs Combin. **24** (2008), 313–326.
- [13] J.A. Kennedy, *Maximum packings of Kⁿ with hexagons*, Australas. J. Combin. **7** (1993), 101–110.
- [14] S. Milici, A. Rosa, V. Voloshin, *Colouring Steiner systems with specified block colour pattern*, Discrete Math. **240** (2001), 145–160.
- [15] A. Rosa, C. Huang, *Another class of balanced graph designs: balanced circuit designs*, Discrete Math. **12** (1975) 3, 269–293.
- [16] B.R. Smith, *Decomposing complete equipartite graphs into cycles of length* 2*p*, J. Comb. Des. **16** (2008) 3, 244–252.
- [17] D. Sotteau, *Decompositions of* $K_{m,n}$ $(K_{m,n}^{\star})$ *into cycles (circuits) of length* 2*k*, J. Comb. Theory B, **30** (1981), 75–81.
- [18] V. Voloshin, *Coloring block designs as mixed hypergraphs: survey*, Abstracts of papers presented to the American Mathematical Society (2005), vol. 26, no. 1, issue 139, p. 15.
- [19] V. Voloshin, *Graph Coloring: History, results and open problems*, Alabama Journal of Mathematics, Spring/Fall 2009.

Paola Bonacini bonacini@dmi.unict.it

Università degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy

Mario Gionfriddo gionfriddo@dmi.unict.it

Università degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy

Lucia Marino lmarino@dmi.unict.it

Università degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy

Received: September 19, 2016. Revised: December 10, 2016. Accepted: December 21, 2016.