PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the Increase in Projectile Velocity in the Intermediate Ballistics Period

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The idea of the application of internal ballistics models together with external ballistics models in fire control systems encounters a problem in relating the calculated muzzle velocity value to the initial velocity value used in external ballistics calculations. The difference between these two values is caused by the action on the projectile of the propellant gases exiting from the muzzle. In this paper an attempt has been made to estimate the increase in projectile velocity outside the muzzle by the use of CFD modelling. The commercial ANSYS FLUENT code has been used together with our own 1D model for the internal ballistics period. Calculations have been performed for various launching systems, from small arms to a 155 mm calibre gun. Conclusions have been drawn concerning the magnitude of the increase in projectile velocity outside the muzzle. The main conclusion is that the velocity increase is generally less than 1% and in most cases can be neglected.
Rocznik
Strony
63--76
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Mechatronics and Aviation, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • rkt@wat.edu.pl,
  • Department of Mechatronics and Aviation, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Klingenberg G., Heimerl J.M., Gun Muzzle Blast and Flash (Progress in Astronautics and Aeronautics, Vol. 139), AIAA, 1988.
  • [2] Serebryakov M.E., Internal Ballistics of Gun Systems and Solid Propellant Rockets (in Russian), Oborongiz, Moscow, 1962.
  • [3] Carlucci D.E., Jacobson S.S., Ballistics: Theory and Design of Guns and Ammunition, CRC Press, Boca Raton – London – New York, 2008.
  • [4] Gun Propulsion Technology, Vol. 109, Progress in Astronautics and Aeronautics (M. Summerfield & L. Stiefel, Eds.), 1988.
  • [5] Leciejewski Z., Surma Z., Torecki S., Trebinski R., Czyzewska M., Baranowski L., Theoretical-experimental Investigations on Propellant Gases Outflow Influence on the Parameters of the Motion of Projectiles (in Polish), Report on Project 533/B/T00/2009/37 financed by the Ministry of Science and Higher Education in the period 2009-2012.
  • [6] Szapiro J., External Ballistics (in Polish), MON, Warszawa, 1956.
  • [7] Leciejewski Z., Surma Z., Torecki S., Trebinski R., Czyzewska M., Theoretical and Experimental Investigations of Projectile Motion Specificity in the Intermediate Period, Proc. Int. Symp. Ballist., 27th, Freiburg, Germany, 2013, 333-343.
  • [8] Erdos J.I., Del Guidice P.D., Calculation of Muzzle Blast Flowfields, AIAA Journal, 1975, 13(8), 1048-1055.
  • [9] Moretti G., A Numerical Analysis of Muzzle Blast Precursor Flow, Comput. Fluids, 1982, 10(1), 51-86.
  • [10] Cayzac R., Carette E., Alziary de Roquefort T., Vaglio C., Brossard J., Intermediate Ballistic Computations and Validation, Proc. Int. Symp. Ballist., 17th, Midrand, South Africa, 1998, 2, 1-8.
  • [11] Jiang Z., Takayama K., Skews B.W., Wave Interactions Following the Emergence of a Supersonic Projectile from a Tube, Proc. Int. Symp. Ballist., 17th, Midrand, South Africa, 1998, 2, 9-16.
  • [12] Hudson M.K., Luchini C., Clutter J.K., Shyy W., The Evaluation of Computational Fluid Dynamics Methods for Design of Muzzle Blast Suppressors for Firearms, Propellants Explos. Pyrotech., 2001, 26(4), 201-208.
  • [13] Bin J., Kim M., Lee S., A Numerical Study on the Generation of Impulsive Noise by Complex Flows Discharging from a Muzzle, International Journal for Numerical Methods in Engineering, 2008, 75(8), 964-991.
  • [14] Jiang X., Chen Z., Fan B., Li H., Numerical Simulation of Blast Flow Fields Induced by a High-speed Projectile, Shock Waves, 2008, 18(3), 205-212.
  • [15] Betekhtin S.A., Vinitskii A.M., Gorokhov N.A., Gasdynamic Fundamentals of Internal Ballistics (in Russian), Oborongiz, Moscow, 1957.
  • [16] Carlucci D., Vega J., Empirical Relationship for Muzzle Exit Pressure in a 155 mm Gun Tube, WIT Trans. Modell. Simul., 2007, 45, 225-229.
  • [17] Carlucci D., Frydman A.M., Cordes J.A., Mathematical Description of Projectile Shot Exit Dynamics (Set-Forward), J. Appl. Mech., 2013, 80, 031501-1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39714fe1-d90b-4ff3-80ab-8597086efe9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.