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Abstract 

The experiments, described in the article, are related to research of a rotating detonation that has been conducted 
in the Institute of Aviation in Warsaw since 2009, under the OPIE project: “Turbine engine with detonation 
combustion chamber”. Measurements of the shock wave parameters, are among the most difficult in the art. This is 
due to high speed of the wave transition, and above all, a very small thickness of the shock wave. For the purposes of 
the mentioned project, a methodology for measuring pressure on the rotating detonation wave was developed. It 
included the type of sensors, their location and their protection from heat and flames. In order to determine the 
capabilities, limitations and accuracy of the method that was used, a series of experiments were planned and carried 
out. They enabled the assessment of the impact, on the measurement of pressure in the shock wave, of the following 
factors: the location of the sensor (frontal and lateral) relative to the shock wave front, protrusion or retraction of the 
sensor in its housing, the covering of the sensor with a protective layer (such as a high temperature silicon). This 
paper presents the results of the experiments that were carried out with use of a small shock tube of a simple design. 
The high-pressure part of the tube (so-called “driver”) was charged with the compressed nitrogen gas. The membrane 
was designed to be torn by pressure and pressure magnitude of the shock wave were measured by a “twin pair” of the 
Kistler 603B type piezoelectric sensors, one of which was always the reference sensor. 
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1. Introduction 
 

The shock wave is defined [2, 3, 4] as a distortion of medium that transits within this medium 
with supersonic speed, which introduced a step change of medium parameters such as: pressure, 
density, temperature or flow velocity, from an initial state (before the shock wave) to a final state 
(behind the shock wave). The measurements of the shock wave parameters are difficult mainly 
because of the small thickness of the wave. What is more the high velocity of the shock wave 
make ones even more difficult (we omit stationary shock waves e.g. associated with supersonic 
flow around a body in a wind tunnel). According to the molecular gas theory it is assumed that the 
thickness of the shock wave is of the order of the mean free path in the medium. In case of air, at 
the sea level, it is only about 0.25 m [2, 3, 5] – in such a thin layer almost the whole pressure 
magnitude increase is done. It follows that, in practice, regardless of the measurement technique, 
all attempts to measure the magnitude of pressure jumps in the non-stationary shock wave (e.g. 
accompanying explosion), leads to measure pressure behind the shock wave, which is averaged in 
space and time. This averaging is related to the sensor size and its “speed” (response time) and the 
rate of pressure drop behind the shock wave. In case of pressure measurements in the shock wave 
that accompanies detonation (for example, combustible gas mixture detonation) additional difficulty 
is the high temperature (as a result of combustion behind the shock wave), which may adversely 
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affect the pressure sensor, distorting its indications, or even damaging it. This problem increases 
with duration of sensor exposure to the high temperature, which for example occurs during tests 
over a rotating detonation phenomena. Such tests have been carried out at the Institute of Aviation 
since 2009, among others, measurement of pressure jumps caused by successive detonation wave 
transitions near the sensor were undertaken. For the purposes of these measurements piezoelectric 
sensors of Kistler 603B type were selected (their parameters are described later in this article). 
Research has shown that the use of water-cooled collet that holds the pressure sensors is not enough 
and there is need to cover the sensors face with extra thermo-ablative protective layer (so-called 
“high temperature silicone” was used). In order to determine the effect of covering the sensors face 
with silicone, and to determine the method and inaccuracy of their housing, as well as to carried 
out the calibration of these sensors, the experiments with the shock tube were undertaken. The 
results of these experiments are presented in this article. 
 
2. Experiment Objectives 
 

The aim of the experiments was to determine how the measurement of the shock wave pressure 
is affected by following factors: 
1) the location of the sensor relative to the shock wave (frontal or lateral), 
2) the sensor face cover with the 2.5 mm protective silicone layer, 
3) inaccuracy of the sensor housing (ejected, retracted) in range of ±1 mm. 
 
3. Technique and the course of experiments 
 

During experiments, the shock tube with the following dimensions was used:  
– internal diameter and length of the high-pressure section: Ø44 x 240 mm,  
– internal diameter and length of the low-pressure section: Ø35 x 1060 mm. 

Low pressure section was open to the environment while the high pressure section was filled up 
with pressurized nitrogen until the membrane burst. Membrane was made of reinforced, rubberized 
fabric, used for production of tourist pontoons. Preliminary tests have shown that the membrane 
has a sufficient strength and its repeatability (burst pressure of between 50 and 70 bar), to obtain 
a shock wave velocity of approximately 2.2 Ma. What is the most important the membrane burst 
does not produce slivers that can interference measurement and even damage the sensors placed 
frontally against the shock wave. The protective silicon cover of sensor face was applied by retracting 
the sensor in its holder by ca 2.5 mm from the face of the holder, space created in such a way was 
completely filled with silicone – schematically it is shown in Fig. 4, Fig. 5. The threaded holder of 
the K1 sensor was mounted with PTFE tape on the thread and the similar holder of the sensor K2 was 
mounted directly into the socket (without strapping with PTFE tape). Several series of experiments 
was carried out (each performed three times), during which pressure in the shock tube, using 2 “high-
speed” pressure sensors (K1, K2), was recorded. In addition, pressure and temperature in the high-
pressure section (P4, T4) and in a low pressure section (P1, T1) was recorded. Two used configurations 
(A, B) of the sensors location in the shock tube are schematically shown on Fig. 1. Details of the 
K1 sensor setting and about the prospective protective silicone layer are described in each case 
together with the presented results (K2 was always a reference sensor). When the sensor was located 
transversely to the shock wave its ejected or retracted position was referred to a “0” sensor position, 
in which the sensor’s face was tangential to the cylindrical inner surface of the shock tube. 

The characteristics of the measuring system used is shown in Tab. 1 and 2. 
 
4. The results of the experiments 
 

The obtained results were presented in form of graphs of pressure course that was recorded by 
K1 and K2 sensors. Graphs are shown in Fig. 2-9. Sensor K2 was always a reference sensor. Charts  
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a)

 
 

b)

 
Fig. 1. The K1 and K2 sensors configurations (A, B), mounted on the shock tube (P4 and T4 – pressure and temperature 

sensors of nitrogen, in high-pressure section of the shock tube) 
 

Tab. 1. Components of used measurement channels 

Channel Measured parameter Sensor type Amplifier type DAQ device 
„fast” f = 2 MHz K1 pressure Kistler 603B Kistler 5018A1000 NI USB-6366_ch01 

K2 pressure Kistler 603B Kistler 5018A1000 NI USB-6366_ch02 
„slow” f = 1 kHz P4 pressure Kobold 100 — NI PCI-6259_ch04 

P1 pressure Kobold 10 — NI PCI-6259_ch05 
T4 temperature K thermocouple SCC-TC02_01 NI PCI-6259 
T1 temperature K thermocouple SCC-TC02_02 NI PCI-6259 

 
Tab. 2. Main parameters of Kistler 603B type piezoelectric sensor 

Crystal type Face diameter Range Natural frequency Acceleration compensation 
quartz 5.5 mm 200 bar > 300 kHz yes 

 
are presented in pairs (A and B configuration - see Fig. 1), in order to highlight the impact of the 
location of the sensors. For each chart, the diagram that illustrate the sensors placement is attached 
on the right. For ease of comparison, for each chart a uniform time interval of 2 ms were applied. 
 
5. Summary and conclusions 
 
1) The location of the sensor, relative to the shock wave, had a significant impact on the measured 

pressure. The sensor located laterally recorded pressure behind the initial shock wave, while the 
sensor located frontally recorded pressure behind the shock wave that was reflected from the sensor 
and its mounting (see pairs of drawings: Fig. 2-3, Fig. 4-5, Fig. 6-7, Fig. 8-9). 

2) During the measurements often the effect of sensor “ringing” occurred [1, 6]. This happened 
when the shock wave strike caused vibrations connected to the sensor mounting. This can be 
seen as the “boost” of first pressure pulse. It is especially noticeable when the sensor was located 
frontally relative to the front of the shock wave (Fig. 3, Fig. 5, Fig. 7). 

3) The sensor silicone cover layer (2.5 mm) had a minor impact on the course of the average 
pressure (Fig. 4, Fig. 5). 
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Fig. 2. Configuration A, both sensors in position “0”, no coating 

 

 
Fig. 3. Configuration B, both sensors in position “0”, no coating 
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Fig. 4. Configuration A, both sensors in position “0”, K1 coated with silicone 

 

 
Fig. 5. Configuration B, both sensors in position “0”, K1 coated with silicone 
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Fig. 6. Configuration A, K2 sensor in position “0”, K1 ejected by 1 mm 

 

 
Fig. 7. Configuration B, K2 sensor in position “0”, K1 ejected by 1 mm 
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Fig. 8. Configuration A, K2 sensor in position “0”, K1 retracted by 1 mm 

 

 
Fig. 9. Configuration B, K2 sensor in position “0”, K1 retracted by 1 mm 
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4) The sensor ejection, beyond the inner surface of the shock tube, seams to does not have 
a significant effect on the recorded pressure. (Fig. 6, Fig. 7). 

5) Retraction of the sensor, beneath the inner surface of the shock tube, have a major impact on 
the recorded pressure for the lateral location of sensor (Fig. 8) and seems to have a small effect 
for the sensor located frontally to the shock wave (Fig. 9). 
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