PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background and objectives: This study describes the treatment planning and dose delivery methods of radiotherapy for patients undergoing bone marrow transplantation. The analysis was carried out in the context of the evolution of these methods over the last 60 years. Materials and methods: A systematic literature search was carried out using the PubMed search engine. Overall, 90 relevant studies were included: 24 general studies, 10 describing isotopes usage, 24 related to conventional and 32 to advanced methods. Results: The analysis of the evolution of radiotherapy methods shows how signifi cantly the precision of dose planning methods and its delivery have changed. The atypical positioning caused by geometrical requirements for applications of isotopes or conventional techniques has been replaced by positioning on a therapeutic couch, which allows a more precise setup of the patient that is necessary for an exact delivery of the planned dose. The dose can be fully optimized and calculated on tomographic images by algorithms implemented in planning systems. Optimization process allows to reduce doses in organs at risk. The accuracy between planned and delivered doses can be checked by pretreatment verifi cation methods, and the patient positioning can be checked by image guidance procedures. Interpretation and conclusions: Current radiotherapy solutions allow a precise delivery of doses to the planning target volume while reducing doses to organs at risk. Nevertheless, it should be kept in mind that establishing radiotherapy as an important element of the whole therapeutic regimen resulted from the follow-up of patients treated by conventional techniques. To confi rm the clinical value of new advanced techniques, clinical trials are required.
Czasopismo
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 87 poz., rys.
Twórcy
  • Medical Physics Department Greater Poland Cancer Centre Garbary 15, 61-866 Poznan, Poland
  • Medical Physics Department Greater Poland Cancer Centre Garbary 15, 61-866 Poznan, Poland
  • Department of Electroradiology Poznan University of Medical Sciences Garbary 15, 61-866 Poznan, Poland
autor
  • Medical Physics Department Greater Poland Cancer Centre Garbary 15, 61-866 Poznan, Poland
  • Medical Physics Department Greater Poland Cancer Centre Garbary 15, 61-866 Poznan, Poland
  • Department of Electroradiology Poznan University of Medical Sciences Garbary 15, 61-866 Poznan, Poland
Bibliografia
  • 1. Wong, J. Y. C., Filippi, A. R., Dabaja, B. S., Yahalom, J., & Specht, L. (2018). Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys., 101, 521–529. DOI: 10.1016/j.ijrobp.2018.04.071.
  • 2. Paix, A., Antoni, D., Waissi, W., Ledoux, M. P., Bilger,K., Fornecker, L., & Noel, G. (2018). Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: A review. Crit. Rev. Oncol.Hematol., 123, 138–148. DOI: 10.1016/j.critrevonc.2018.01.011.
  • 3. Lin, H. S., & Drzymala, R. E. (2003). Total body irradiation. In C. A. Perez & L. W. Brady (Eds.), Principles and practice of radiation oncology (pp. 333–342). Philadeplphia: Lippincott-Raven.
  • 4. Wolden, S. L., Rabinovitch, R. A., Bittner, N. H. J., Galvin, J. M., Giap, H. B., Schomberg, P. J., & Rosenthal, S. A. (2013). American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice guideline for the performance of total body irradiation (TBI). J. Clin. Oncol., 36, 97–101. DOI: 10.1097/COC.0b013e31826e0528.
  • 5. Bieri, S., Helg, C., Chapuis, B., & Miralbell, R. (2001). Total body irradiation before allogeneic bone marrow transplantation: is more dose better? Int. J. Radiat. Oncol. Biol. Phys., 49, 1071–1077.
  • 6. Hartman, A. R., Williams, S. F., & Dillon, J. J. (1998). Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transplant., 22, 439–443. DOI: 10.1038/sj.bmt.1701334.
  • 7. Blaise, D., Maraninchi, D., Michallet, M., Reiffers, J., Jouet, J. P., Milpied, N., Devergie, A., Attal, M., Sotto, J. J., Kuentz, M., Ifrah, N., Dauriac, C., Bordigoni, P., Gratecos, N., Guilhot, F., Guyotat, D., Gluckman, E., & Vernant, J. P. (2001). Long-term follow-up of a randomized trial comparing the combination of cyclophosphamide with total body irradiation or busulfan as conditioning regimen for patients receiving HLA-identical marrow grafts for acute myeloblastic leukemia in first complete remission. Blood, 97, 3669–3671.
  • 8. Dusenbery, K. E., Daniels, K. A., McClure, J. S., McGlave, P. B., Ramsay, N. K., Blazar, B. R., Neglia, J. P., Kersey, J. H., & Woods, W. G. (1995). Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int. J. Radiat. Oncol. Biol. Phys.,31, 119–128.
  • 9. Michel, G., Gluckman, E., Esperou-Bourdeau, H., Reiffers, J., Pico, J. L., Bordigoni, P., Thuret, I., Blaise, D., Bernaudin, F., & Jouet, J. P. (1994). Allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in fi rst complete remission: impact of conditioning regimen without total-body irradiation–a report from the Societe Francaise de Greffe de Moelle. J. Clin. Oncol., 12, 1217–1222. DOI: 10.1200/JCO.1994.12.6.1217.
  • 10. Bunin, N., Aplenc, R., Kamani, N., Shaw, K., Cnaan,A., & Simms, S. (2003). Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant., 32, 543–548. DOI: 10.1038/sj.bmt.1704198.
  • 11. Clift, R. A., Buckner, C. D., Appelbaum, F. R., Sullivan, K. M., Storb, R., & Thomas, E. D. (1998). Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during fi rst remission of acute myeloid leukemia. Blood, 92, 1455–1456.
  • 12. Ringden, O., Ruutu, T., Remberger, M., Nikoskelainen, J., Volin, L., Vindelov, L., Parkkali, T., Lenhoff, S., Sallerfors, B., & Ljungman, P. (1994). A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood, 83, 2723–2730.
  • 13. Bolling, T., Kreuziger, D. C., Ernst, I., Elsayed, H., & Willich, N. (2011). Retrospective, monocentric analysis of late effects after total body irradiation (TBI) in adults. Strahlenther. Onkol., 187, 311–315. DOI: 10.1007/s00066-011-2190-1.
  • 14. Blaise, D., Maraninchi, D., Archimbaud, E., Reiffers, J., Devergie, A., Jouet, J. P., Milpied, N., Attal, M., Michallet, M., & Ifrah, N. (1992). Allogeneic bone marrow transplantation for acute myeloid leukemia in fi rst remission: a randomized trial of a busulfancytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the Group d’Etudes de la Greffe de Moelle Osseuse. Blood, 79, 2578–2582.
  • 15. Leiper, A. D. (1995). Late effects of total body irradiation. Arch. Dis. Child, 72, 382–385. DOI: 10.1136/adc.72.5.382.
  • 16. Shank, B. (1996). The balancing act: pneumonitis vs. relapse in cytoreductive regimens containing total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 36, 261–262.
  • 17. Ringden, O., Remberger, M., Ruutu, T., Nikoskelainen, J., Volin, L., Vindelov, L., Parkkali, T., Lenhoff, S., Sallerfors, B., Mellander, L., Ljungman, P., & Jacobsen, N. (1999). Increased risk of chronic graft-versus-host disease, obstructive bronchiolitis, and alopecia with busulfan versus total body irradiation: long-term results of a randomized trial in allogeneic marrow recipients with leukemia. Nordic Bone Marrow Transplantation Group. Blood, 93, 2196–2201.
  • 18. Socie, G., Clift, R. A., Blaise, D., Devergie, A., Ringden, O., Martin, P. J., Remberger, M., Deeg, H. J., Ruutu, T., Michallet, M., Sullivan, K. M., & Chevret, S. (2001). Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood, 98, 3569–3574.
  • 19. Della Volpe, A., Ferreri, A. J. M., Annaloro, C., Mangili, P., Rosso, A., Calandrino, R., Villa, E., Lambertenghi-Deliliers, G., & Fiorino, C. (2002) Lethal pulmonary complications signifi cantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 52, 483–488.
  • 20. Hasegawa, W., Pond, G. R., Rifkind, J. T., Messner, H. A., Lau, A., Daly, A. S., Kiss, T. L., Kotchetkova, N., Galal, A., & Lipton, J. H. (2005). Long-term follow-up of secondary malignancies in adults after allogeneic bone marrow transplantation. Bone Marrow Transplant., 35, 51–55. DOI: 10.1038/sj.bmt.1704706.
  • 21. Curtis, R. E., Rowlings, P. A., Deeg, H. J., Shriner, D. A., Socie, G., Travis, L. B., Horowitz, M. M., Witherspoon, R. P., Hoover, R. N., Sobocinski, K. A., Fraumeni, J. F. Jr., & Boice, J. D. Jr. (1997). Solid cancers after bone marrow transplantation.N. Engl. J. Med., 336, 897–904. DOI: 10.1056/NEJM199703273361301.
  • 22. Heublein, A. C. (1932). Preliminary report on continuous irradiation of the entire body. Radiology, 18, 1051–1062.
  • 23. Ferrebee, J. W., & Thomas, E. D. (1958). Factors affecting the survival of transplanted tissues. Am. J. Med. Sci., 235, 369–386.
  • 24. van Dyk, J., Galvin, J. M., Glasgrow, G. P., & Podgorsak, E. B. (1986). The physical aspects of total and half body photon irradiation. New York: American Institute of Physics, Inc. (AAPM Report 17, Task Group 29).
  • 25. Webster, E. W. (1960). Physical considerations in the design of facilities for the uniform whole-body irradiation of man. Radiology, 75, 19–32.
  • 26. Jacobs, M. L., & Pape, L. (1960). A total body irradiation chamber and its uses. Int. J. Appl. Radiat. Isot., 9, 141–143.
  • 27. Brucer, M. (1961). A total body irradiator. Int. J. Appl. Radiat. Isot., 10, 99–105.
  • 28. Draeger, R. H., Lee, R. H., Shea, T. E., Whitten, F. I., & Eicher, M. (1953). Research Report 11. Bethesda, MD: Naval Medical Research Institute. (1219).
  • 29. Sahler, O. D. (1959). Development of a room specifically designed for total body irradiation. Radiology, 72, 266–267.
  • 30. Surmont, J., Dutreix, A., & Lalanne, C. M. (1960). Les irradiations in toto pour greffes de tissu ou transplantation d’organe chez l’homme. Problems techniques. J. Radiol. Electrol., 41, 679–689.
  • 31. Thomas, E. D., Storb, R., & Buckner, C. D. (1976). Total body irradiation in preparation for marrow engraftment. Transplant. Proc., 4, 591–593.
  • 32. Lam, W. C., Order, S. E., & Thomas, E. D. (1980). Uniformity and standardization of single and opposing cobalt-60 sources for total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 6, 245–250.
  • 33. Leung, P. M. K., Rider, W. D., Webb, H. P., Aget, H., & Johns, H. E. (1981). Cobalt-60 therapy unit for large fi eld irradiation. Int. J. Radiat. Oncol. Biol. Phys., 7, 705–712.
  • 34. Cunningham, J. R., & Wright, D. J. (1962). A simple facility for whole-body irradiation. Radiology, 78, 941–949.
  • 35. Quast, U. (1985). Physical treatment planning of total body irradiation – Patient translation and beam zone method. Med. Phys., 12, 567–573.
  • 36. Mulvey, P. J., & Godlee, J. N. (1982). Technique and dosimetry for TBI at University College Hospital, London. J. Eur. Radiother., 3, 241–242.
  • 37. Peters, V. G., & Herer, A. S. (1984). Modification of a standard cobalt-60 unit for total body irradiation at 150 cm SSD. Int. J. Radiat. Oncol. Biol. Phys., 10, 927–932.
  • 38. Chretien, M., Côté, C., Blais, R., Brouard, L., RoyLacroix, L., Larochelle, M., Roy, R., & Pouliot, J. (2000). A variable speed translating couch technique for total body irradiation. Med. Phys., 27, 1127–1130. DOI: 10.1118/1.598978.
  • 39. Pla, M., Chenery, S. G., & Podgorsak, E. B. (1983). Total body irradiation with a sweeping beam. Int. J. Radiat. Oncol. Biol. Phys., 9, 83–89.
  • 40. Kim, T. H., Khan, F. M., & Galvin, J. M. (1980). Total body irradiation conference: A report of the work party: Comparison of total body irradiation techniques for bone marrow transplantation. Int. J. Radiat. Oncol. Biol. Phys., 6, 779–784.
  • 41. Malicki, J., Wachowiak, J., Kosicka, G., Stryczyńska, G., Nowak, A., & Pracz, J. (2001). Total body irradiation before bone marrow transplantation: aims and results. Adv. Exp. Med. Biol., 495, 277–282.
  • 42. Girinsky, T., Socie, G., Ammarguellat, H., Cosset, J. M., Briot, E., Bridier, A., & Gluckman, E. (1994).Consequences of two different doses to the lungs during a single dose of total body irradiation: results of a randomized study on 85 patients. Int. J. Radiat. Oncol. Biol. Phys., 30, 821–824.
  • 43. Malicki, J. (1998). Doses in critical organs during total body irradiation before bone marrow transplantation. Ann. Transplant., 3, 14–19.
  • 44. Barrett, A., Depledge, M. H., & Powles, R. L. (1983). Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 9, 1029–1033.
  • 45. Ozsahin, M., Pène, F., Touboul, E., Gindrey-Vie, B., Dominique, C., Lefkopoulos, D., Krzisch, C., Balosso, J., Vitu, L., & Schwartz, L. H. (1992). Total-body irradiation before bone marrow transplantation. Results of two randomized instantaneous dose rates in 157 patients. Cancer, 69, 2853–2865.
  • 46. Gogna, N. K., Morgan, G., Downs, K., Atkinson, K.,& Biggs, J. (1992). Lung dose rate and interstitial pneumonitis in total body irradiation for bone marrow transplantation. Australas. Radiol., 36, 317–320.
  • 47. Planskoy, B., Bedford, A. M., Davis, F. M., Tapper, P. D., & Loverock, L. T. (1996). Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988–1993: I. Phantom measurements and planning methods. Phys. Med. Biol., 41, 2307–2326.
  • 48. Yao, R., Bernard, D., Turian, J., Abrams, R. A., Sensakovic, W., Fung, H. C., & Chu, J. C. (2012). A simplifi ed technique for delivering total body irradiation (TBI) with improved dose homogeneity. Med. Phys., 39, 2239–2248. DOI: 10.1118/1.3697526.
  • 49. Malicki, J., Kosicka, G., Stryczyńska, G., & Wachowiak,J. (2001). Cobalt 60 versus 15 MeV photons during total body irradiation: doses in the critical organs and complexicity of the procedure. Ann. Transplant., 6, 18–22.
  • 50. Malicki, J., Skrobala, A., Kosicka, G., & Wachowiak, J. (2005). The effi cacy and reliability of lung protection during total body irradiation of patients with disseminated malignancies. Neoplasma, 52, 325–329.
  • 51. Kawa-Iwanicka, A., Lobodziec, W., Dybek, M., Nenko, D., & Iwanicki, T. (2012). Dose distribution homogeneity in two TBI techniques-Analysis of 208 irradiated patients conducted in Stanislaw Leszczynski Memorial Hospital, Katowice. Rep. Pract. Oncol. Radiother., 17, 367–375. DOI: 10.1016/j.rpor.2012.07.013.
  • 52. Malicki, J. (1999). The accuracy of dose determination during total body irradiation. Strahlenther. Onkol., 175, 208–212.
  • 53. Piotrowski, T., Adamska, K., & Malicki, J. (2007). Effect of scattered radiation in the total body irradiation technique: evaluation of the spoiler and wall dose component in the depth dose distribution. Nukleonika, 52(4), 153–158.
  • 54. Shank, B., O’Reilly, R. J., Cunningham, I., Kernan, N., Yaholom, J., Brochstein, J., Castro-Malaspina, H., Kutcher, G. J., Mohan, R., & Bonfi glio, P. (1990). Total body irradiation for bone marrow transplantation: The Memorial Sloan-Kettering Cancer Center experience. Radiother. Oncol., 18, 68–81.
  • 55. Hui, S. K., Das, R. K., Thomadsen, B., & Henderson, D. (2004). CT-based analysis of dose homogeneity in total body irradiation using lateral beam. J. Appl. Clin. Med. Phys., 5, 71–79.
  • 56. Ozsahin, M., Belkacemi, Y., Pene, F., Dominique, C.,Schwartz, L. H., Uzal, C., Lefkopoulos, D., GindreyVie, B., Vitu-Loas, L., & Touboul, E. (1994). Totalbody irradiation and cataract incidence: a randomized comparison of two instantaneous dose rates. Int. J. Radiat. Oncol. Biol. Phys., 28, 343–347.
  • 57. Burmeister, J., Nalichowski, A., Snyder, M., Halford, R., Baran, G., Loughery, B., Hammoud, A., Rakowski, J., & Bossenberger, T. (2018). Commissioning of a dedicated commercial Co-60 total body irradiation unit. J. Appl. Clin. Med. Phys., 19, 131–141. DOI: 10.1002/acm2.12309.
  • 58. Snyder, M., Halford, R., Loughery, B., Nalichowski, A., Bossenberger, T., & Burmeister, J. (2017). Monte Carlo treatment planning for a new Co-60 total body irradiator. Med. Phys., 44, 2918.
  • 59. Mackie, T. R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J. O., Yang, J., Paliwal, B., & Kinsella, T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys., 20, 1709–1719.
  • 60. Piotrowski, T., Skórska, M., Jodda, A., Ryczkowski, A., Kaźmierska, J., Adamska, K., Karczewska-Dzionk, A., Żmijewska-Tomczak, M., & Włodarczyk, H. (2012). Tomotherapy – different way of dose delivery in radiotherapy. Contemp. Oncol. (Pozn), 16, 16–25. DOI: 10.5114/wo.2012.27332.
  • 61. Zeverino, M., Agostinelli, S., Taccini, G., Cavagnetto, F., Garelli, S., Gusinu, M., Vagge, S., Barra, S., & Corvò, R. (2012). Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel fi eld junction technique. Med. Dosim., 37, 314–320. DOI: 10.1016/j.meddos.2011.12.001.
  • 62. Hui, S. K., Kapatoes, J., Fowler, J., Henderson, D., Olivera, G., Manon, R. R., Gerbi, B., Mackie, T. R., & Welsh, J. S. (2005). Feasibility study of helical tomotherapy for total body or total marrow irradiation. ed. Phys., 32, 3214–3224. DOI: 10.1118/1.2044428.
  • 63. Wong, J. Y., Liu, A., Schultheiss, T., Popplewell, L., Stein, A., Rosenthal, J., Essensten, M., Forman, S., & Somlo, G. (2006). Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol. Blood Marrow Transplant., 12, 306–315. DOI: 10.1016/j.bbmt.2005.10.026.
  • 64. Schultheiss, T. E., Wong, J., Liu, A., Olivera, G., & Somlo, G. (2007). Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int. J. Radiat. Oncol. Biol. Phys., 67, 1259–1267. DOI: 10.1016/j.ijrobp.2006.10.047.
  • 65. Wong, J. Y., Rosenthal, J., Liu, A., Schultheiss, T., Forman, S., & Somlo, G. (2009). Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int. J. Radiat. Oncol. Biol. Phys., 73, 273–279. DOI: 10.1016/j.ijrobp.2008.04.071.
  • 66. Shueng, P. W., Lin, S. C., Chong, N. S., Lee, H. Y., Tien, H. J., Wu, L. J., Chen, C. A., Lee, J. J., & Hsieh, C. H. (2009). Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in 30 J. Litoborska et al. Asia. Technol. Cancer Res. Treat., 8, 29–38. DOI:10.1177/153303460900800105.
  • 67. Konstanty, E., Malicki, J., Łagodowska, K., & Kowalik, A. (2017). Dosimetric verifi cation of dose calculation algorithm in the lung during total marrow irradiation using helical tomotherapy. J. Cancer Res. Ther., 13, 33–37. DOI: 10.4103/jcrt.JCRT_980_15.
  • 68. Piotrowski, T., Czajka, E., Bak, B., Kazmierska, J., Skorska, M., Ryczkowski, A., Adamczyk, M., & Jodda, A. (2014). Tomotherapy: Implications on daily workload and scheduling patients based on three years’ institutional experience. Technol. Cancer Res. Treat., 13, 233–242. DOI: 10.7785/tcrt.2012.500374.
  • 69. Takahashi, Y., & Hui, S. K. (2013). Impact of very long time output variation in the treatment of total marrow irradiation with helical tomotherapy. Radiat. Oncol., 8, 123. DOI: 10.1186/1748-717X-8-123.
  • 70. Roeske, J. C., Lujan, A., & Rotmensch, J. (2000). Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int. J. Radiat. Oncol. Biol. Phys., 48, 1613–1621.
  • 71. Wu, Q., Arnfi eld, M., & Tong, S. (2000). Dynamic splitting of large intensity-modulated fi elds. Phys. Med. Biol., 45, 1731–1740.
  • 72. Aydogan, B., Mundt, A. J., & Roeske, J. C. (2006). Linac-based Intensity Modulated Total Marrow Irradiation (IM-TMI). Technol. Cancer Res. Treat., 5, 513–519. DOI: 10.1177/153303460600500508.
  • 73. Yeginer, M., Roeske, J. C., Radosevich, J. A., & Aydogan, B. (2011). Linear accelerator-based intensitymodulated total marrow irradiation technique for treatment of hematologic malignancies: a dosimetric feasibility study. Int. J. Radiat. Oncol. Biol. Phys., 79, 1256–1265. DOI: 10.1016/j.ijrobp.2010.06.029.
  • 74. Bush, K., Townson, R., & Zavgorodni, S. (2008). Monte Carlo simulation of RapidArc radiotherapy delivery. Phys. Med. Biol., 53, N359–N370. DOI: 10.1088/0031-9155/53/19/N01.
  • 75. Mancosu, P., Cozzi, L., & Muren, L. P. (2019). Total marrow irradiation for hematopoietic malignancies using volumetric modulated arc therapy: A review of treatment planning studies. Phys. Imaging Radiat. Oncol., 11, 47–53. DOI: 10.1016/j.phro.2019.08.001.
  • 76. Korreman, S., Medin, J., & Kjaer-Kristoffersen, F. (2009). Dosimetric verifi cation of RapidArc treatment delivery. Acta Oncol., 48, 185–191. DOI: 10.1080/02841860802287116.
  • 77. Fogliata, A., Cozzi, L., Clivio, A., Ibatici, A., Mancosu, P., Navarria, P., Nicolini, G., Santoro, A., Vanetti, E., & Scorsetti, M. (2011). Preclinical assessment of volumetric modulated arc therapy for total marrow irradiation. Int. J. Radiat. Oncol. Biol. Phys., 80, 628–636. DOI: 10.1016/j.ijrobp.2010.11.028.
  • 78. Aydogan, B., Yeginer, M., Kavak, G. O., Fan, J., Radosevich, J., & Gwe-Ya, K. (2011). Total marrow irradiation with rapidarc volumetric arc therapy. Int. J. Radiat. Oncol. Biol. Phys., 81, 592–599. DOI: 10.1016/j.ijrobp.2010.11.035.
  • 79. Han, C., Schultheiss, T. E., & Wong, J. Y. C. (2012). Dosimetric study of volumetric modulated arc therapy fields for total marrow irradiation. Radiother. Oncol., 102, 315–320. DOI: 10.1016/j.radonc.2011.06.005.
  • 80. Surucu, M., Yeginer, M., Kavak, G. O., Fan, J., Radosevich, J. A., & Aydogan, B. (2012). Verifi cation of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom. Med. Phys., 39, 281–288. DOI: 10.1118/1.3668055.
  • 81. Symons, K., Morrison, C., Parry, J., Woodings, S., & Zissiadis, Y. (2018). Volumetric modulated arc therapy for total body irradiation: A feasibility study using Pinnacle3 treatment planning system and Elekta AgilityTM linac. J. Appl. Clin. Med. Phys., 19, 103–110.DOI: 10.1002/acm2.12257.
  • 82. Mancosu, P., Navarria, P., Castagna, L., Reggiori, G., Sarina, B., Tomatis, S., Alongi, F., Nicolini, G., Fogliata, A., Cozzi, L., & Scorsetti, M. (2013). Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy. Med. Phys., 40,111713. DOI: 10.1118/1.4823767.
  • 83. Mancosu, P., Navarria, P., Castagna, L., Reggiori, G.,Stravato, A., Gaudino, A., Sarina, B., Tomatis, S., & Scorsetti, M. (2015). Plan robustness in fi eld junction region from arcs with different patient orientation in total marrow irradiation with VMAT. Phys. Med., 31, 677–682. DOI: 10.1016/j.ejmp.2015.05.012.
  • 84. Mancosu, P., Navarria, P., Reggiori, G., Cozzi, L., Fogliata, A., Gaudino, A., Lobefalo, F., Paganini, L.,Palumbo, V., Sarina, B., Stravato, A., Castagna, L.,Tomatis, S., & Scorsetti, M. (2015). In-vivo dosimetry with Gafchromic films for multi-isocentric VMAT irradiation of total marrow lymph-nodes: a feasibility study. Radiat. Oncol., 10, 86. DOI: 10.1186/s13014-015-0391-y.
  • 85. Accuray Inc. (2017). PreciseARTTM adaptive radiation therapy option. Retrieved September 1, 2019, from https://www.accuray.com/wp-content/uploads/rx-preciseart-mkt-txplg-0217-0031-1.pdf.
  • 86. Xie, C., Xu, S., Xu, W., Cong, X., Ge, R., Gong, H., Ju, Z., & Dai, X. (2015). Patient-specifi c dose verification method using ArcCHECK for total marrow irradiation with intensity modulated arc therapy. Zhongguo Yi Liao Qi Xie Za Zhi, 39, 68–71. (in Chinese).
  • 87. Bao, Z., Zhao, H., Wang, D., Gong, J., Zhong, Y., Xiong, Y., Deng, D., Xie, C., Liu, A., Wang, X., & Liu, H. (2018). Feasibility of a novel dose fractionation strategy in TMI/TMLI. Radiat. Oncol., 13, 248. DOI: 10.1186/s13014-018-1201-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39663d2a-2dc9-441b-ae99-46a69db22382
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.