PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Research on gravity field modelling and gravimetry in Poland in 2019–2022

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the reviewed and summarised research activities of the Polish research groups on gravimetry and gravity field modelling in the period of 2019–2022. It contains the results of absolute gravity surveys for the maintenance of the international gravity reference level in Poland and Europe, and for geodynamic research with an emphasis on metrological aspects. It also contains relative gravimetry issues as well as the results of marine gravity surveys in the southern Baltic Sea. Non-tidal gravity changes were extensively investigated. Long-term gravity variations were monitored at the Borowa Gora Geodetic-Geophysical Observatory and in a few other locations in Poland. The contribution of gravimetric records to seismic studies was investigated. Temporal variations of the gravity field from GRACE (Gravity Recovery and Climate Experiment) and GRACE-FO (GRACE Follow-On) data, in particular, deformations of the Earth’s surface as well as temporal variations of heights, total water storage and groundwater storage were investigated. Moreover, GRACE-based products and the performance of monthly Global Geopotential Models (GGMs) were a subject of research. GGMs developed in last years were evaluated. The research on developing new approaches in geoid modelling and their validation was conducted. New regional and local geoid models were determined for Poland and Ethiopia. The use of different techniques for estimating the absolute sea level at sites of the selected network in the Baltic Sea was investigated.
Rocznik
Strony
art. no. e46, 2023
Opis fizyczny
Bibliogr. 51 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics, Warsaw, Poland
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics, Warsaw, Poland
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics, Warsaw, Poland
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics, Warsaw, Poland
Bibliografia
  • 1. Banasik, P., Bujakowski, K., Kudrys, J. et al. (2020). Development of a precise local quasigeoid model for the city of Krakow – QuasigeoidKR2019. Reports on Geodesy and Geoinformatics, 109, 25–31. DOI: 10.2478/rgg-2020-0004.
  • 2. Belay, E.Y., Godah, W., Szelachowska, M. et al. (2021). ETH–GM21: A New Gravimetric Geoid Model over Ethiopia Developed Using the Least Square Collocation. J. African Earth Sci., 183, 104313. DOI: 10.1016/j.jafrearsci.2021.104313.
  • 3. Belay, E.Y., Godah, W., Szelachowska, M. et al. (2022). ETH-GQS: An Estimation of Geoid-to-Quasigeoid Separation over Ethiopia. Geod. Geodyn., 13(1), 31–37. DOI: 10.1016/j.geog.2021.09.006.
  • 4. Birylo, M., and Rzepecka, Z. (2021). An Analysis of Total Water Storage Changes Obtained from GRACE FO Observations over the Venezia Islands Area Supported with Additional Data. Geomat. Environ. Eng., 15(2), 17–31. DOI: 10.7494/geom.2021.15.2.17.
  • 5. Dykowski, P., Sekowski, M., and Krynski, J. (2018a). Superconducting Gravimeter Data from Borowa Gora – Level 1. GFZ Data Services. DOI: 10.5880/igets.bg.l1.001.
  • 6. Dykowski, P., Sekowski, M., Krynski, J. (2018b). Superconducting Gravimeter Data from Borowa Gora – Level 2. GFZ Data Services. DOI: 10.5880/igets.bg.l2.001.
  • 7. Dykowski, P., Sekowski, M., Krynski, J. et al.. (2019). Gravity, GNSS, InSAR combination for monitoring deformation related to industrial activity on Multidisciplinary Upper Silesian Episode within the EPOS-PL project. In 5th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements TG-SMM, 1–4 October 2019, St. Petersburg, Russia.
  • 8. Dykowski, P., Sekowski, M., Wilde-Piorko, M. et al. (2021a). Development of tidal gravity records in Poland within the framework of the EPOS-PL project. In EUREF Symposium, 26-28 May 2021, Slovenia, Ljubljana.
  • 9. Dykowski, P., Krynski, J., Sekowski, M. et al. (2021b). Evaluation of the gravity reference function at the Borowa Gora Observatory. In IAG Scientific Assembly 2021, 28 June – 2 July, Beijing, online.
  • 10. Dykowski, P., Krynski, J., and Olszak, T. (2022a). Modernization and current status of the Polish Gravity Control. In IGRF Workshop 2022, 11–13 April, Leipzig, Germany.
  • 11. Dykowski, P., Arnal, M., Menoret, V. et al. (2022b). First results from the AQG-B07 absolute quantum gravimeter. In EGU General Assembly 2022, 23–27 May, Vienna, Austria.
  • 12. Dykowski, P., Arnal, M., Menoret V. et al. (2022c). Testing the capabilities of the AQG-B07 absolute quantum gravimeter. In Gravity Geoid and Height Systems 2022, 12–14 September 2022, Austin, USA.
  • 13. Falk, R., Pálinkáš, V., Wziontek, H. et al. (2020). Final report of EURAMET.M.G-K3 regional comparison of absolute gravimeters. Metrologia, 57(1A), 07019. DOI: 10.1088/0026-1394/57/1A/07019.
  • 14. Godah, W. (2019). IGiK–TVGMF: A MATLAB package for computing and analysing temporal variations of gravity/mass functionals from GRACE satellite based global geopotential models. Comput. Geosci., 123, 47–58. DOI: 10.1016/j.cageo.2018.11.008.
  • 15. Godah, W., Gedamu, A.A., and Bedada, T.B. (2019a). On the contribution of dedicated gravity satellite mission to the modelling of the Earth gravity field over East Africa. In 27th IUGG General Assembly, 8–18 July, 2019, Montréal, Canada.
  • 16. Godah, W., Szelachowska, M., and Krynski, J. (2019b). On the recovery of temporal variations of geoid heights determined with the use of GGMs based on SST-hl data from non-dedicated gravity satellite missions. Bull. Geod. Sci., 25(3), e2019017. DOI: 10.1590/s1982-21702019000300017.
  • 17. Godah, W., Szelachowska, M., Ray, J.D. et al. (2020a). Comparison of vertical deformations of the Earth’s surface obtained using GRACE-based GGMs and GNSS data – A case study of Poland. Acta Geodyn. et Geomater., 17, 169–176. DOI: 10.13168/AGG.2020.0012.
  • 18. Godah, W., Ray, J.D., Szelachowska, M. et al. (2020b). The Use of National CORS Networks for Determining Temporal Mass Variations within the Earth’s System and for Improving GRACE/GRACE-FO Solutions. Remote Sens., 12(20), 3359. DOI: 10.3390/rs12203359.
  • 19. Godah, W., Szelachowska, M., Krynski, J. et al. (2020c). Assessment of Temporal Variations of Orthometric/Normal Heights Induced by Hydrological Mass Variations over Large River Basins Using GRACE Mission Data. Remote Sens., 12(18), 3070. DOI: 10.3390/rs12183070.
  • 20. Gruber, T., Ågren, J., Angermann, D. et al. (2022). Geodetic SAR for Height System Unification and Sea Level Research – Results in the Baltic Sea Test Network. Remote Sens., 14(14), 3250. DOI: 10.3390/rs14143250.
  • 21. GUGiK (2022) Information guide of Head Office of Geodesy and Cartography. Retrieved November 2022 from https://www.gov.pl/web/gugik/wydanie-2—listopad-2022.
  • 22. Jarmolowski, W. (2019). On the relations between signal spectral range and noise variance in least-squares collocation and simple kriging: example of gravity reduced by EGM2008 signal. Bull. Geophys. Oceanography, 60(3), 457–474. DOI: 10.4430/bgta0265.
  • 23. Karkowska, K., Wilde-Piorko, M., Dykowski, P. et al. (2021). Determination of the Earth’s mantle structure based on a joint analysis of gravimetric and seismometric earthquake recordings at the Borowa Gora Geodetic-Geophysical Observatory. In IAG Scientific Assembly 2021, June 28 – July 2, Beijing, China, on-line.
  • 24. Karkowska, K., Wilde-Piorko, M., and Dykowski, P. (2022a). Analysis of earthquakes recordings of tidal gravimeters in the period range of 10-1000 s. Acta Geodyn. et Geomater., 19, 1(205), 79–92. DOI: 10.13168/AGG.2021.004.3.
  • 25. Karkowska, K., Wilde-Piorko, M., Dykowski, P. et al. (2022b). Exploring the Earth’s mantle structure based on joint gravimetric and seismometric group-velocity dispersion curves of Rayleigh waves. In EGU General Assembly 2022, 23–27 May Vienna, Austria.
  • 26. Kotyrba, A., Frolik, A., Kortas, L. et al. (2020). Grawimetryczno-hydrometryczny system monitoringu wstrząsów górniczych na Górnym Śląsku. Przegląd Geologiczny, 68(11), 833–842. DOI: 10.7306/2020.35.
  • 27. Krynski, J., Dykowski, P., and Olszak, T. (2019). Research on gravity field modelling and gravimetry in Poland in 2015–2018. Geod. Cartogr., 68(1), 31-63. DOI: 10.24425/gac.2019.126096.
  • 28. Krynski, J., and Rogowski, J.B. (2021). National Report of Poland to EUREF 2020/2021. In Symposium of the IAG Subcommission for Europe (EUREF), 26–28 May 2021, Ljubljana, Slovenia.
  • 29. Krynski, J., and Liwosz, T. (2023). Research on reference frames and reference networks in Poland in 2019-2022. Adv. Geod. Geoinf., 72(2), e44. DOI: 10.24425/agg.2023.146156.
  • 30. Lenczuk, A., Leszczuk, G., Klos, A. et al. (2020). Comparing variance of signal contained in the most recent GRACE Solutions. Geod. Cartogr., 69(1). 19–37. DOI: 10.24425/gac.2020.131084.
  • 31. Ligas, M., Lucki, B., and Banasik, P. (2022). A cross validation-based comparison of kriging and IDW in local GNSS/levelling quasigeoid modelling. Reports on Geodesy and Geoinformatics, 114(1), 1–7. DOI: 10.2478/rgg-2022-0004.
  • 32. Lyszkowicz, A., Nastula, J., Zielinski, J.B. et al. (2021). A New Model of Quasigeoid for the Baltic Sea Area. Remote Sens., 13(13), 2580. DOI: 10.3390/rs13132580.
  • 33. Marjanska, D., Olszak, T., and Pietka, D. (2019). Validation of European Gravimetric Geoid models in context of realization of EVRS system in Poland. Geod. Cartogr., 68(2), 329–347. DOI: 10.24425/gac.2019.128461.
  • 34. Marjanska, D. (2022). Aeronautical data requirements and geodetic data – a case study on regulations in Poland. Aircraft Engineering and Aerospace Technology, 94(5), 770–780. DOI: 10.1108/AEAT-09-2021-0276.
  • 35. Ménoret, V., Vermeulen, P., Le Moigne, N. et al. (2018). Gravity measurements below 10–9 g with a transportable absolute quantum gravimeter. Sci. Rep., 8, 12300. DOI: 10.1038/s41598-018-30608-1.
  • 36. Meyer, U., Sosnica, K., Arnold, D. et al. (2019). SLR, GRACE and Swarm Gravity Field Determination and Combination. Remote Sens., 11 (8), 956. DOI: 10.3390/rs11080956.
  • 37. Nastula, J., Nawrocki, J., Pietrzak, J. et al. (2022). gPhoneX Stationary Tidal Gravimeter in AOS Borowiec. In Gravity Geoid and Height Systems 2022, 12–14 September 2022, Austin, USA.
  • 38. Öztürk, E.Z., Godah, W., and Abbak, R.A. (2020). Estimation of Physical Height Changes from GRACE Satellite Mission Data over Turkey. Acta Geodaet. et Geophys., 55(2), 301–317. DOI: 10.1007/s40328-020-00294-5.
  • 39. Pyrchla, K., Pajak, M., Pyrchla, J. et al. (2020). Analysis of free-air anomalies on the seaway of the Gulf of Gdansk: A case study. Earth Space Sci., 7, e2019EA000983. DOI: 10.1029/2019EA000983.
  • 40. Richter, H.M.P., Lück, C., Klos, A. et al. (2021). Reconstructing GRACE-type time-variable gravity from the Swarm satellites. Sci. Rep., 11, 1117. DOI: 10.1038/s41598-020-80752-w.
  • 41. Rzepecka, Z., and Birylo, M. (2020). Groundwater storage changes derived from GRACE and GLDAS on smaller river basin – A case study in Poland. Geosci., 10(4), 124. DOI: 10.3390/geosciences10040124.
  • 42. Strugarek, D., Sosnica, K., and Jäggi, A. (2019). Characteristics of GOCE orbits based on Satellite Laser Ranging. Adv. Space Res., 63(1), 417–431. DOI: 10.1016/j.asr.2018.08.033.
  • 43. Szabó, V., and Marjanska, D. (2020). Accuracy analysis of gravity field changes from GRACE RL06 and RL05 data compared to in situ gravimetric measurements in the context of choosing optimal filtering type. Artificial Satellites: Journal of Planetary Geodesy, 55(3), 100–117. DOI: 10.2478/arsa-2020-0008.
  • 44. Szelachowska, M., Godah, W., and Krynski, J. (2022). Contribution of GRACE satellite mission to the determination of orthometric/normal heights corrected for their dynamics – A case study of Poland. Remote Sens., 14(17), 4271. DOI: 10.3390/rs14174271.
  • 45. Sliwinska, J., Birylo, M., Rzepecka, Z. et al. (2019). Analysis of groundwater and total water storage changes in Poland using GRACE observations, in-situ data, and various assimilation and climate models. Remote Sens., 11(24), 2949. DOI: 10.3390/rs11242949.
  • 46. Trojanowicz, M. (2019). Local Disturbing Potential Model with the Use of Geophysical Gravity Data Inversion Case Study in the Area of Poland. Acta Geodyn. et Geomater., 16(3(195)), 293–299. DOI: 10.13168/AGG.2019.0025.
  • 47. Trojanowicz, M., Osada, E., and Karsznia, K. (2020a). Precise local quasigeoid modelling using GNSS/levelling height anomalies and gravity data. Surv. Rev., 52(370), 76–83. DOI: 10.1080/00396265.2018.1525981.
  • 48. Trojanowicz, M., Pospíšil, L., and Jamroz, O. (2020b). Use of the UNB_TOPODENS model for local modelling of chosen gravity field parameters in the Western Carpathians. Acta Geodyn. et Geomater., 17, 1(197), 113–118. DOI: 10.13168/AGG.2020.0008.
  • 49. Trojanowicz, M., Owczarek-Wesolowska, M., Wang, Y.M. et al. (2021). Quasi Geoid and Geoid Modeling with the Use of Terrestrial and Airborne Gravity Data by the GGI Method – A Case Study in the Mountainous Area of Colorado. Remote Sens., 13, 4217. DOI: 10.3390/rs13214217.
  • 50. Wziontek, H., Bonvalot, S., Falk, R. et al. (2021). Status of the International Gravity Reference System and Frame. J. Geod., 95, 7. DOI: 10.1007/s00190-020-01438-9.
  • 51. Zhong, L., Sosnica, K., Weigelt, M. et al. (2021). Time-Variable Gravity Field from the Combination of HLSST and SLR. Remote Sens., 13 (17), 3491. DOI: 10.3390/rs13173491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39604312-33d5-4eeb-87c8-8654ae6ed9ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.