PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of a hardware trojan chip detector model using arduino microcontroller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
These days, hardware devices and its associated activities are greatly impacted by threats amidst of various technologies. Hardware trojans are malicious modifications made to the circuitry of an integrated circuit, Exploiting such alterations and accessing the level of damage to devices is considered in this work. These trojans, when present in sensitive hardware system deployment, tends to have potential damage and infection to the system. This research builds a hardware trojan detector using machine learning techniques. The work uses a combination of logic testing and power side-channel analysis (SCA) coupled with machine learning for power traces. The model was trained, validated and tested using the acquired data, for 5 epochs. Preliminary logic tests were conducted on target hardware device as well as power SCA. The designed machine learning model was implemented using Arduino microcontroller and result showed that the hardware trojan detector identifies trojan chips with a reliable accuracy. The power consumption readings of the hardware characteristically start at 1035-1040mW and the power time-series data were simulated using DC power measurements mixed with additive white Gaussian noise (AWGN) with different standard deviations. The model achieves accuracy, precision and accurate recall values. Setting the threshold proba-bility for the trojan class less than 0.5 however increases the recall, which is the most important metric for overall accuracy acheivement of over 95 percent after several epochs of training.
Rocznik
Strony
20--33
Opis fizyczny
Bibliogr. 14 poz., fig., tab.
Twórcy
  • University of Lagos, Electrical Electronics and Computer Engineering Department, Nigeria
autor
  • University of Lagos, Electrical Electronics and Computer Engineering Department, Nigeria
  • University of Lagos, Electrical Electronics and Computer Engineering Department, Nigeria
Bibliografia
  • [1] Bai, X. (2018). Text classification based on LSTM and attention. 2018 Thirteenth International Conference on Digital Information Management (ICDIM) (pp. 29–32). IEEE. https://doi.org/10.1109/ICDIM.2018.8847061
  • [2] Chen, X., Wang, L., Wang, Y., Liu, Y., & Yang, H. (2016). A general framework for hardware trojan detection in digital circuits by statistical learning algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (vol. 36, no. 10, pp. 1633–1646). IEEE. https://doi.org/10.1109/TCAD.2016.2638442
  • [3] Cui, Q., Sun, K., Wang, S., Zhang, L., & Li, D. (2016). Hardware trojan detection based on cluster analysis of mahalanobis distance. 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 234–238). IEEE. https://doi.org/10.1109/IHMSC.2016.65
  • [4] Grus, J. (2015). Data Science from Scratch. 1005 Gravenstein Highway North. O’Reilly Media.
  • [5] He, C., Hou, B., Wang, L., En, Y., & Xie, S. (2014). A novel hardware Trojan detection method based on side-channel analysis and PCA algorithm. 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS) (pp. 1043–1046). IEEE. https://doi.org/10.1109/ICRMS.2014.7107362
  • [6] Iwase, T., Nozaki, Y., Yoshikawa, M., & Kumaki, T. (2015). Detection technique for hardware Trojans using machine learning in frequency domain. 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE) (pp. 185–186). IEEE. https://doi.org/10.1109/GCCE.2015.7398569
  • [7] Jahan, I., Sajal, S. Z., & Nygard, K. E. (2019). Prediction model using recurrent neural networks. 2019 IEEE International Conference on Electro Information Technology (EIT) (pp. 1–6) IEEE. https://doi.org/10.1109/EIT.2019.8834336
  • [8] Ni, L., Li, S., Chen, J., Wei, P., & Zhao, Z. (2014). The influence on sensitivity of hardware trojans detection by test vector. 2014 Communications Security Conference (CSC 2014) (pp. 1–6). IEEE. https://doi.org/10.1049/cp.2014.0756
  • [9] Paul, L. C., Suman, A. A., & Sultan, N. (2013). Methodological analysis of principal component analysis (PCA) method. International Journal of Computational Engineering & Management, 16(2), 32–38.
  • [10] Tutorial Point. (2020). Retrieved October 8, 2021 from https://www.tutorialspoint.com
  • [11] Salmani, H., Tehranipoor, M., & Plusquellic, J. (2011). A novel technique for improving hardware trojan detection and reducing trojan activation time. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 112–125. https://doi.org/10.1109/TVLSI.2010.2093547
  • [12] Shende, R., & Ambawade, D. D. (2016). A side channel based power analysis technique for hardware trojan detection using statistical learning approach. 2016 Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN) (pp. 1–4). IEEE. https://doi.org/10.1109/WOCN.2016.7759894
  • [13] Wang, L.-W., & Luo, H.-W. (2011). A power analysis based approach to detect Trojan circuits. 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (pp. 380–384). IEEE. https://doi.org/10.1109/ICQR2MSE.2011.5976635
  • [14] Zhang, L., Sun, K., Cui, Q., Wang, S., Li, X., & Di, J. (2016). Multi adaptive hardware Trojan detection method based on power characteristics template. 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 414–418). IEEE. https://doi.org/10.1109/CCIS.2016.7790294
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-395c344a-84bf-4b2c-8af9-6b3b5720323c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.